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Abstract: This paper presents a comparative study on linear and nonlinear control techniques for the
near-hover attitude stabilisation of a quadcopter. A dynamic model of the quadcopter is developed
using Newton-Euler equations, which is inherently nonlinear. Firstly, the classical PID controller is
implemented directly on the nonlinear system by decoupling the attitude dynamics and using separate
controllers for each attitude variable. Linear controllers can also be implemented on this system by
linearising it about an operating point, which is shown for the linear quadratic regulator (LQR). Such
a linear approximation may not always retain the actual system dynamics and are not very efficient
in the real world scenario. Model based nonlinear controllers prove to be superior in such instances,
and one such popular technique – Feedback Linearisation using dynamic inversion is discussed in
this paper. The proposed control algorithms are tested on the quadcopter model using numerical
simulations in MATLAB/Simulink and analysed in terms of fall time, percentage undershoot and
computation time.
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1 Introduction

Unmanned aerial vehicles (UAVs) are now becoming
increasingly popular in diverse fields such as reconnaissance,
aerial surveillance, search and rescue missions as first
responder and industrial automation. Quadcopter UAVs
are superior to their counterparts due to the small size and

high manoeuvrability which enable them to traverse complex
trajectories efficiently. A quadcopter is an under-actuated
system with six degrees of freedom but only four control inputs
which are the rotor speeds. The thrust and torques required
for driving the quadcopter are generated by adjusting the
individual rotor speeds. To achieve propulsion in a particular
direction, the axis of quadcopter must be tilted with respect
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to the vertical. The translational motion of the quadcopter is
hence coupled with its angular orientation, making quadcopter
dynamics and control complex.

Mathematical modelling is the first and most critical step
towards understanding the system dynamics, which precedes
controller design. The differential equations governing the
quadcopter dynamics are mainly derived using the Newton-
Euler approach (Luukkonen, 2011) and Euler-Lagrange
approach (Bouabdallah et al., 2004; Das et al., 2009).
Complex interactions like blade flapping and rotor stiffness
effects are neglected in most cases due to challenges in
modelling. Quadcopter control focuses mainly on two class of
problems: attitude stabilisation and trajectory following. The
controllers used for this purpose belong to three categories:
linear controllers, model-based nonlinear controllers and
learning based controllers as seen in Li et al. (2015). The
implementation of the controllers belonging to the first two
categories have been discussed in multiple literature whereas
the latter approach is still under development.

Attitude control of a quadcopter using proportional-
integral-derivative (PID) controllers is discussed in
Luukkonen (2011). The concept of independent control action
for the attitude variables is shown here. The same decoupled
control law is followed in Bouabdallah et al. (2004), where the
PID controllers are designed neglecting the gyroscopic effects
but including the rotor dynamics. A comparison with linear
quadratic regulator (LQR) is shown, for which the system is
linearised around each state to accommodate a larger extent
of flight motion. The same linearisation scheme has been
adopted in this paper. Sabatino (2015) attempts total control
of quadcopter using the LQR technique, after performing
model linearisation using small angle approximation and
applying the equilibrium conditions.

Among the nonlinear controllers, feedback linearisation
control (FBL) is one of the most popular approaches seen in
literature. Two methods of feedback linearisation control are
discussed in Sabatino (2015):

1 Exact linearisation and non-interacting control via
dynamic feedback.

2 Dynamic inversion with zero-dynamics stabilisation.

For (1), the position variables and yaw are chosen as the
output function and the thrust input is delayed till its second
derivative to ensure non-singularity of the feedback law.
The system is then extended to include the thrust input
and its first derivative as the states, which then fulfils the
condition for feedback linearisation. The same extended
system approach is presented in Lee et al. (2009) where the
small angle approximation is used to simplify the dynamics
before performing repeated differentiation. For the inputs
terms to appear, the fourth derivative of the position variables
is calculated before obtaining the inverse feedback law.

Trajectory control of quadcopter using feedback
linearisation control by dynamic inversion is given in Bonna
and Camino, 2015. Separate feedback linearisation laws are
used for rotational dynamics and translational dynamics after

repeated differentiation following which a linear auxiliary
control input is used to stabilise the fourth order error
dynamics. An important point to be noted is that the approach
mentioned in our paper does not require the small angle
approximation, unlike other relevant works in literature. The
same dynamic inversion technique is used for the attitude
control in Das et al. (2009), with the attitude variables chosen
as the outputs of interest. However through small angle
approximation for the Euler angles, the matrix to be inverted is
directly obtained from the dynamics without performing any
repeated differentiation. The resulting linearised dynamics can
be controlled using any of the standard techniques like PID
or back-stepping control. In our paper, an attempt is made
to achieve attitude control using a combination of the same
dynamic inversion technique and PD control without the small
angle approximation.

A comparative study between PID controller, inverse
control, sliding mode control and back-stepping control for
attitude stabilisation is carried out in Dikmen et al. (2009).
Using total error as the criterion to evaluate the performance,
the sliding mode control proves to be the best controller.
A more detailed analysis between feedback linearisation
control and sliding mode control is performed in Lee et al.
(2009). For feedback linearisation control, uncertainty in
the dynamic model can severely affect performance, and
even cause instability. In addition, the dependence on higher
derivative terms of the states makes it sensitive to external
disturbances. While sliding mode control is a more robust
approach which compensates for model uncertainties and
external disturbances, handling these uncertainties causes very
high input gains and is a serious problem in power-limited
systems like mini quadcopters. The feedback linearisation
control is simpler to implement and also use more efficient
inputs without chattering, compared to sliding mode control.

In this paper, the hovering control problem for a quadcopter
is addressed. An attempt is made to achieve near hover
attitude stabilisation using both linear and nonlinear control
techniques. Firstly, PID control is applied individually to
each attitude variable to obtain the expression for thrust
and corresponding torque components based on the error
values. While PID control is implemented without any model
linearisation, the LQR control is applied only after linearising
the attitude sub model around each state. Finally, the feedback
linearisation control based on dynamic inversion is proposed.
PD control is used in combination to generate the auxiliary
control input to stabilise the second order error dynamics. The
dynamic model takes into consideration all the contributing
forces including aerodynamic drag so that the controller is
well suited to handle the external disturbances.

The paper is organised as follows: Section 2 deals with
the dynamic modelling of the quadcopter using Newton-
Euler formulation. In Section 3, attitude controllers based
on PID, LQR and Feedback Linearisation are proposed.
Section 4 contains the simulation results for the proposed
controllers along with a comparison study. Section 5 contains
the concluding remarks of this paper and future course of
action.
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2 Mathematical model of quadcopter

The basic model of a quadcopter is given in Figure 1, based
on which the operating principle is explained. Rotors 1
and 3 rotate in the counter-clockwise direction with angular
velocities ω1 and ω3, whereas rotors 2 and 4 rotate in the
clockwise direction with angular velocities ω2 and ω4. Two
frames of reference – an inertial frame {O} and a body-fixed
frame {B} are used to describe the quadcopter dynamics. The
inertial frame has been chosen with gravity in the negative
z direction. The rotations about the x, y and z axes are
respectively called roll, pitch and yaw. The position of the
centre of mass of the quadcopter is expressed in the inertial
frame as ϵ =

[
X Y Z

]T . The angular position is defined in

the inertial frame with the Euler angles η =
[
ϕ θ ψ

]T
whereas

angular velocities ν =
[
P QR

]T
are defined in the body

frame.

Figure 1 Quadcopter model with frames of reference (see online
version for colours)

The relationship between these two frames is expressed using
the rotation matrix R.

R =

CψCθ CψSθSϕ − SψCϕ CψSθCϕ + SψSϕ
SψCθ SψSθSϕ + CψCϕ SψSθCϕ − CψSϕ
−Sθ CθSϕ CθCϕ

(2.1)

where Cθ = cos θ and Sθ = sin θ.

The steady state thrust and reaction torque (due to rotor
drag) for a spinning rotor in free air is modelled using
momentum theory. Using a lumped parameter approximation,
the expressions for thrust and reaction torque are obtained.

Ti = Kω2
i , τi = Bω2

i

in which K is the lift constant and B is the drag constant.
The total thrust developed by the four rotors is given by

T = K
4∑
i=1

ω2
i (2.2)

The rolling and pitching moments occur due to the difference
in thrust produced by the opposing rotors.

Mϕ = L(T4 − T2) (2.3)

Mθ = L(T3 − T1) (2.4)

where L is the distance between the rotor and the centre of
mass of the quadcopter.

Yawing moment is caused by the drag force acting on all
the propellers and opposing their rotation.

Mψ = B(−ω2
1 + ω2

2 − ω2
3 + ω2

4) (2.5)

The following are the assumptions underlying the dynamic
model of the quadcopter.

• The quadcopter structure is rigid.

• The structure of the quadcopter is symmetrical. Hence,
the inertia matrix is diagonal and time-invariant.

I =

IXX 0 0
0 IY Y 0
0 0 IZZ


• The centre of mass of the quadcopter coincides with the

origin of the body frame {B}.

• Blade flapping effect (deformation of blades at high
velocities) has been neglected.

Newton-Euler formulation is used to derive the dynamic
equations of motion for the quadcopter. In the case of a
quadcopter, it is convenient to express the velocity dynamics
with respect to a mixed frame {M} composing of the linear
dynamics with respect to the inertial frame {O} and the angular
dynamics with respect to the body frame {B}. The velocity
vector in the mixed frame is given by

[
Ẋ Ẏ Ż P QR

]
.

In the inertial frame, the external forces acting on the
quadcopter are gravitational force, thrust and aerodynamic
drag. While the gravitational force acts in the inertial frame
negative z direction, the thrust acts in the body frame z
direction. The magnitude of drag force along the coordinate
axes are directly proportional to the components of velocities
in the corresponding directionsFD =

[
AxẊ AyẎ AzŻ

]T
.

The velocities in the inertial frame are represented as

Ẋ = U (2.6a)

Ẏ = V (2.6b)

Ż =W (2.6c)

Newton’s law for translational dynamics can be expressed in
the inertial frame in vector form as

ϵ̈ =
1

m
(G+RT − FD) (2.7)

or in the component form as:

Ẍ = U̇ = (sinϕ sinψ + cosϕ sin θ cosψ)
T

m
− Ax

m
U

(2.8a)

Ÿ = V̇ = (− sinϕ cosψ + cosϕ sin θ sinψ)
T

m
− Ay
m
V

(2.8b)

Z̈ = Ẇ = −g + (cosϕ cos θ)
T

m
− Az
m
W (2.8c)
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The equations of rotational dynamics are expressed in the body
frame. The transformation of angular velocities from body
frame to inertial frame is given by. ϕ̇θ̇

ψ̇

 =

1 sinϕtanθ cosϕtanθ
0 cosϕ − sinϕ

0 sinϕ
cos θ

cosϕ
cos θ

PQ
R

 (2.9)

The angular acceleration due to the quadcopter’s inertia Iν̇,
the moment due to centripetal force ν × Iν and gyroscopic
couple Γ are balanced by the external torque and the resistive
torque generated due to aerodynamic drag. The torque vector
is given by MB =

[
Mϕ Mθ Mψ

]T , whereas the moment

produced by drag force is MD =
[
ArP ArQ ArR

]T
.

The rotational dynamics based on Euler equations is
expressed in vector form as

Iν̇ + ν × Iν + Γ = MB −MD (2.10)

or in component form,

Ṗ =

(
IY Y − IZZ

IXX

)
QR− IR

IXX
QΩ+

Mϕ

IXX
− Ar
IXX

P

(2.11a)

Q̇ =

(
IZZ − IXX

IY Y

)
PR− IR

IY Y
PΩ+

Mθ

IY Y
− Ar
IY Y

Q

(2.11b)

Ṙ =

(
IXX − IY Y

IZZ

)
PQ+

Mψ

IZZ
− Ar
IZZ

R (2.11c)

The state vector of the quadcopter written in the frame {M}
is given by

X =
[
X Y Z ϕ θ ψ U V W P Q R

]T (2.12)

Using the expressions for the states given by equations (2.6),
(2.8), (2.9), and (2.11), a quadcopter plant is created in
Simulink using the Level-2 S-Function block.

3 Attitude control of quadcopter

Of the 12 states, only six states
[
ϕ, θ, ψ,X, Y, Z

]
are of

primary interest for controller design. The under-actuation
problem is solved by using two distinct control loops, inner
loop dealing with the attitude variables

[
ϕ, θ, ψ, Z

]
and the

outer loop dealing with the position variables
[
X,Y

]
. So, for

the purpose of attitude control, we consider a sub model of the
quadcopter plant with the state vector:

Xsub =
[
Z ϕ θ ψ W P Q R

]T (3.1)

As the translational motion of the quadcopter depends on
the angular orientation, it is ideal to control the rotational
behaviour first and then control the translation behaviour. For
instance, setting ϕ to a particular value helps in controlling the
motion of the quadcopter in the Y direction.

3.1 PID based attitude control

Among all the controllers, the classical PID controller has
the simplest structure and is the easiest to implement. The
linear PID controller can be applied on the nonlinear system
directly by decoupling the attitude dynamics and providing
independent control action for each variable. This does not
require the model to be linearised about the hover condition,
and can thus stabilise the quadcopter even in case of strong
perturbations.

The thrust and torque components are obtained from the
error in attitude variables using individual PID blocks as
shown in the following equations.

Mϕ = IXX

(
Kϕ,P eϕ +Kϕ,D ėϕ +Kϕ,I

∫ t

0

eϕdt

)
(3.2a)

Mθ = IY Y

(
Kθ,P eθ +Kθ,D ėθ +Kθ,I

∫ t

0

eθdt

)
(3.2b)

Mψ = IZZ

(
Kψ,P eψ +Kψ,D ėψ +Kψ,I

∫ t

0

eψdt

)
(3.2c)

T = m cosϕ cos θ (g +KZ,P eZ +KZ,D ˙eZ

+KZ,I

∫ t

0

eZdt

)
(3.2d)

where eϕ = ϕd − ϕ and so on.

3.2 LQR based attitude control

LQR is an optimal control technique which drives the system
states to the desired value by minimising a cost function.
Consider a dynamic system of the form:

ẋ = Ax+Bu (3.3)
y = Cx+Du

The cost function and the static feedback control law are as
follows:

J =

∫ ∞

t0

{
uTRu+ [x− xd]

T
Q [x− xd]

}
dt (3.4a)

u = −K [x− xd] (3.4b)

where K = R−1BS
S is a positive definite matrix obtained by solving the

Riccati’s algebraic equation.

SA+ATS − SBR−1BTS + CTQC = 0 (3.5)

To implement the LQR based control, the sub model
mentioned in equation (3.1) is considered. The expressions for
the state variables are generally of the form

˙Xsub = F (Xsub) +G (Xsub)u (3.6)

A linear approximation is obtained by linearising around each
state of the subsystem and applying the equilibrium conditions
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(hovering state) represented by Xsub. Linearising around
each state causes the controller to be effective even during
aggressive flight motions that involve large Euler angles. The
coefficients in the linearised plant dynamics are obtained as
shown in equations (3.7) and (3.8).

¯Xsub =
[
Z̄ 0 0 0 0 0 0 0

]
A =

∂F

∂Xsub
|Xsub= ¯Xsub

(3.7)

B = G
(

¯Xsub

)
(3.8)

Applying the above equations to the quadcopter sub model,
we get

A =



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0−Az

m 0 0 0
0 0 0 0 0 − Ar

IXX
0 0

0 0 0 0 0 0 − Ar

IY Y
0

0 0 0 0 0 0 0 − Ar

IZZ


(3.9a)

B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1
m 0 0 0
0 1
IXX

0 0

0 0 1
IY Y

0

0 0 0 1
IZZ


(3.9b)

The matrixC is obtained directly from the dynamic equations
as seen in equation (3.3).The value of K is determined
by solving the Riccati’s algebraic equation, performed by
MATLAB using the LQR function:

K = LQR (A,B,Q,R) (3.10)

where Q = CT .C and R is an identity matrix. The above
equation is solved repeatedly varying the weighting matrix Q
to find the control gains that give the desired response. The
control architecture for LQR is given in Figure 2.

Figure 2 LQR control architecture

3.3 Feedback linearisation Control

Feedback linearisation control (FBL) is a popular nonlinear
control approach, where nonlinear systems are algebraically
transformed into (fully or partly) linear ones by cancelling
the nonlinearities. Most feedback linearisation techniques
are based either on input-output linearisation or input-state
linearisation. The input-output linearisation scheme is adopted
in this work. Input-Output linearisation involves repeated
differentiation of the output variables till the input terms
appear, the last derivative being the rth one. This helps in
obtaining a mapping between the transformed input and the
output variables. The concept of dynamic inversion is used
to perform feedback linearisation. The output variables not
considered above are called residual or internal dynamics.
Dynamic inversion need not necessarily yield the internal
dynamics stable, which will then require another outer
stabilising loop.

Consider a single input single output (SISO) system with
state x, input u and output y whose dynamics are given by

ẋ = f (x) + g (x)u (3.11a)
y = h (x) (3.11b)

The derivative of the output y can be expressed in terms of the
lie derivative as shown below:

ẏ =
∂h

∂x
[f (x) + g (x)u] = Lfh (x) + Lgh (x)u (3.12)

Following the input-output linearisation scheme, the output
y is differentiated continuously until input terms appear in
the differential equation. Generally, the ith derivative of y is
expressed in terms of lie derivative as:

y(i) = L
(i)
f h (x) + LgL

(i−1)
f h (x)u (3.13)

The above equation can be linearised through dynamic
inversion choosing the control law as

u =
1

LgL
(i−1)
f

[
−L(i)

f h (x) + v
]

(3.14)

where v is a linear control input.
This yields a simple linear differential equation

y(i) = v (3.15)

By choosing appropriate linear control inputs v, the inversion-
based control law u can be used to shape the response of the
system.

The concepts used for SISO systems can be extended to
MIMO systems. In particular, square systems which have
the same number of inputs and outputs are considered. For
an under-actuated MIMO system like the quadcopter, full
feedback linearisation cannot be applied. So, the output
function is chosen such that part of the dynamics is linearised.
To implement this controller, we consider the sub model M1

and choose the output function as:



Hovering control of a quadcopter using linear and nonlinear techniques 125

y = [Z, ϕ, θ, ψ]
T (3.16)

The first derivative with respect to time does not contain
input terms, as evident from the following equations. The
expressions are obtained from equations (2.8c) and (2.10).

Ż

ϕ̇

θ̇

ψ̇

 =


1 0 0 0
0 1 sinϕtanθ cosϕtanθ
0 0 cosϕ − sinϕ

0 0 sinϕ
cos θ

cosϕ
cos θ

 ∗


W
P
Q
R

 (3.17)

or ẏ = Hγ.
The second derivative of all the output variables includes

the corresponding input variable, after substituting for
Ẇ , Ṗ , Q̇, Ṙ from equations (2.9c) and (2.16).

ÿ = Ḣγ +Hγ̇ (3.18)

where γ̇ = S + Tu,

S =


−g(

IY Y −IZZ

IXX

)
QR− IR

IXX
QΩ− Ar

IXX
P(

IZZ−IXX

IY Y

)
PR− IR

IY Y
PΩ− Ar

IY Y
Q(

IXX−IY Y

IZZ

)
PQ− Ar

IZZ
R


and

T =


1
m cos θ cosϕ 0 0 0

0 1
IXX

0 0

0 0 1
IY Y

0

0 0 0 1
IZZ


Following the above substitution and rearranging the terms,
we get

ÿ = α+ βu (3.19)

The total relative degree is eight, which is equal to the number
of states of the sub model. This guarantees the stability of the
subsystem which is sufficient for attitude control. The control
law is written based on the general form

u = β−1 (−α+ v) (3.20)

with v = [v1 v2 v3 v4]
T being the auxiliary control input.

The resulting second order linear system is

ÿ = v (3.21)

By using the standard PD controller with a feed forward
acceleration term, the error in attitude ey = yd − y is forced
to converge to zero for a desired attitude yd.

v = ÿd +Kpey +Kdėy (3.22)

The control gains Kp and Kd (positive-definite matrices) are
obtained by tuning the PD controller such that the poles of the
closed loop error dynamics of the subsystem (3.16,3.17) are
in the left half of s-plane.

ëy +Kpey +Kdėy = 0 (3.23)

The control architecture for Feedback Linearisation is given
in Figure 3.

4 Simulation results

All the three proposed controllers are tested on the dynamic
model developed in the Simulink environment. The values
for the parameters in the quadcopter model are taken from
Luukkonen (2011) and listed in Table 1.

Table 1 Parameter values for the quadcopter model

Parameter Value Unit
g 9.8 m/s2

L .225 m
m .468 kg
K 2.980 ·10−6

B 0.114 ·10−6

IXX 4.856 ·10−3 kg s2

IY Y 4.856 ·10−3 kg s2

IZZ 8.801 ·10−3 kg s2

IR 3.357 ·10−5 kg s2

The desired attitude commands are provided from a block,
which contains step functions for each of the variables. The
step function starts with an initial condition of 10◦ for the three
angles and 5m for height and falls to 0◦ for the angles and 3m

Figure 3 Feedback linearisation control architecture
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Figure 4 PID controller step response (see online version for colours)

Figure 5 LQR controller step response (see online version for colours)

Figure 6 FBL controller step response (see online version for colours)

for the height with a step time of 5 s. The values of all the gains
for the three controllers are listed in Tables 2–4. Figures 4–6
show the step response of the three controllers.

Figure 7 clearly shows that the combination of Feedback
Linearisation and PD controllers has the best performance
in stabilising the height. It shows minimum undershoot and
remains steady before the step input is given. The PID

controller has the least fall time but high undershoot caused
by the step input. LQR shows a very poor performance in this
case, as it saturates below the desired height. Table 5 gives a
quantitative comparison between the controllers based on the
parameters mentioned above.

Looking at the step response for ϕ as seen in Figure 8, it
is evident that the combination of Feedback Linearisation and
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Figure 7 Comparison between PID, LQR and FBL based on Z step response (see online version for colours)

Figure 8 Comparison between PID, LQR and FBL based on ϕ step response (see online version for colours)

PD controllers shows the fastest response to the step input with
minimum fall time and undershoot. Though LQR shows the
least fall time and undershoot as per Table 6, there is a delay in
response to the step input. PID controller shows comparatively
poor performance as the fall is very gradual and it takes a
long time to settle. The same performance order is seen when
the step response for θ is considered, as seen in Figure 9 and
Table 7.

Table 2 Gain values for PID controller

Controller KP KD KI

Z 15 10 10
ϕ 6 1.75 1.5
θ 5 3 3
ψ 6 1.75 1.5

Table 3 Gain values for LQR controller

Controller K1 K2

Z 100 9.427
ϕ 10 0.1703
θ 10 0.1703
ψ 10 0.0267

Analysing the step response of ψ based on Figure 10 and
Table 8, LQR has a fall time significantly lower than the other
two controllers. The combination of FBL and PD controllers

has a higher fall time, but same percentage of undershoot. The
PID controller lags behind in both parameters.

Table 4 Gain values for Feedback Linearisation controller

Controller KP KD

Z 3 2
ϕ 3 2
θ 3 2
ψ 2 2

Table 5 Characteristic parameters to a step input for Z

Z PID LQR FBL
Fall time (seconds) 0.68 1.020 1.194
Percentage Undershoot (m) 20.732 0.515 5.851

Table 6 Characteristic parameters to a step input for ϕ

ϕ PID LQR FBL
Fall time (seconds) 2.276 0.131 1.060
Percentage Undershoot (m) 22.84 0.515 6.989

Finally, a comparison can also be made based on the
computation time in the simulation environment. All the three
controllers are simulated for 50s in Simulink. The computation
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Figure 9 Comparison between PID, LQR and FBL based on θ step response (see online version for colours)

Figure 10 Comparison between PID, LQR and FBL based on ψ step response (see online version for colours)

time is least for the combination of Feedback linearisation and
PD controller, followed by the PID controller. LQR has very
high computation time owing to the dynamic calculation of
control gains.

Table 7 Characteristic parameters to a step input for θ

θ PID LQR FBL
Fall time (seconds) 3.050 .134 1.074
Percentage Undershoot (m) 38.194 0.505 5.851

Table 8 Characteristic parameters to a step input for ψ

ψ PID LQR FBL
Fall time (seconds) 1.748 0.355 1.574
Percentage Undershoot (m) 32.667 1.531 1.531

Based on the above analysis, the following conclusions can be
made:

• The combination of Feedback Linearisation and PD
controller has the best overall performance for the four
attitude variables, with fast response and minimum
undershoot and settling time.

• Linear Quadratic Regulator has the least fall time and
undershoot in all the cases, but there exists a small
delay in control action after the step input is given.

• The PID controller lags behind the other two controllers
and shows a very slow response for the three angles.
This is due to the direct application of a linear controller
on the nonlinear system.

5 Conclusion

This paper presents a comparative study on linear and non-
linear control techniques used for the attitude control of
quadcopters. The dynamic model of the quadcopter is derived
using the Newton-Euler approach to test the performance
of the proposed control algorithms. The step response of
all three controllers are analysed in terms of fall time,
percentage undershoot and computation time. The best results
are obtained while using the Feedback Linearisation control
technique.

In our future work, we aim to address the challenge of
vertical take-off and landing which can lead to increased
manoeuvrability and flight capability. In this work, all the
simulations were carried out assuming that the quadcopter’s
entire motion occurs at a sufficient height above the ground,
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and take-off and landing are not performed by the quadcopter.
Another challenge is that the presented mathematical model
does not consider external disturbances like wind velocities
and ground effects due to the difficulty in modelling these
effects. The controllers should be made robust in that they deal
effectively with the external disturbances neglected during
modelling. Designing a controller that can combat the failure
of one or more rotors is a further step in this direction.
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