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Nomenclature 

 
{O}(O,X,Y,Z) Inertial frame 

{B}(OB,XB,YB,ZB) Body frame 

ε Quadcopter position w.r.t {O}, m 

η Quadcopter Euler angles w.r.t {O}, rad 

Φ Roll angle, rad 

θ Pitch angle, rad 

Ψ Yaw angle, rad 

P,Q,R Angular velocities about XB,YB,ZB respectively, rad/s 

VX,VY,VZ Linear velocities about XB,YB,ZB respectively, m/s 

CD Thrust coefficient of the motor 

ωi Rotational speed of ith rotor, rad/s 

A Cross-sectional area of the propeller’s rotation, m2 

r Radius of rotor, m 

𝑇𝑖 Thrust given by ith rotor, N 

Ax, Ay, Az Linear drag coefficients in the X,Y,Z respectively, N.s/m 

𝑀𝛷 Rolling moment, N.m 

 𝑀𝜃 Pitching moment, N.m 

𝑀𝜓 Yawing moment, N.m 

𝐿 Distance between the center of propeller and the center of quadcopter, m 

B Torque coefficient of motor 

IR inertia moment of rotor, kg.m2 

Ar Rotational drag coefficient, N.m.s 

𝐼 Inertia matrix, kg.m2 

m Mass of quadcopter, kg 

g Acceleration due to gravity, m/s2 
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Chapter 1 - Introduction 
    

A Quadcopter is a rotor-based, unmanned aerial vehicle.  Quad copters are becoming increasingly 

popular because of their small size and high maneuverability and find applications in diverse fields. 

The dynamics of a quadcopter is highly non-linear. Furthermore, it is an under-actuated system 

with six degrees of freedom and four control inputs. The thrust as well as the torques required for 

tilting the quadcopter are the control inputs which determine the motion of the vehicle. The thrust 

as well as torques are generated by adjusting the rotor speeds. The thrust generated by the rotor 

blades is always in the direction of the central axis of the quadcopter. Therefore, to achieve 

propulsion in a particular direction, the axis of quadcopter should be tilted with respect to the 

vertical. The translational motion of a quadcopter is hence coupled with its angular orientation, 

making quadcopter dynamics and control very complex.  

 

Quad copters have applications in many fields, some of which are listed below.  

 

 Reconnaissance – used to gather military intelligence by scouting enemy territory. Because 

of their small size and minimal noise generated, they can move undetected. 

 Aerial surveillance – road patrol, home security, law and order. The ease of motion between 

points through air and large visibility of the surroundings, especially with a strong camera 

makes quad copters a prime candidate for aerial surveillance needs.  

 Used in motion picture film making and photography for aerial shots and views.  

 Assistance for search and rescue operations in disaster struck areas or in case of fire.  

 Used in automation systems in industries for material handling purposes.  

 Delivery of goods and items. 

 Used for 3D modelling of terrains or large structures as well as thermal imaging. 

 

Failure of quadcopter may occur due to many reasons such as 

 

 Electronic Speed Control (ESC) burn out – ESC may burn out if the current exceeds the 

maximum permissible current. This causes the propeller associated with the ESC to stop 

spinning and can lead to failure. 

 Damage to motor, whether due to physical damage or exceeding the maximum current 

value can cause the motor to stop functioning mid-flight or may cause loss in efficiency. 

 Any physical damage to the propeller blades such as dents, nicks, cuts etc. can cause 

vibrations and may cause the propeller blade to come off mid-flight. 

 

 Bending of propeller blades can lead to a decrease in lift and increased noise during 

operation leading to a decrease in efficiency. 
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The loss of quadcopter propeller blades can cause the quadcopter to crash. Apart from the monetary 

loses associated with the damage to quadcopter parts, it can have many negative consequences. 

Loss of a quadcopter used for reconnaissance work can lead to loss of valuable military intelligence 

and causes the risk of it being discovered by the enemy. In motion picture film making, thermal 

imaging photography etc., the equipment mounted on the quadcopter are very costly and propeller 

failure can lead to the damage of valuable equipment. In search and rescue operations in disaster 

affected regions, the failure of the quadcopter can lead to possible delays, increasing the risk on 

the life of affected people. In material handling systems, failure may lead to damage of costly parts. 

Added to all this, there is also the risk of the quadcopter crashing on to people and causing injuries 

especially in public spaces.  

 

The potential risk of loss of a propeller is high in many of the situations in terms of cost as well as 

other factors. Hence, a mechanism for the control of a quadcopter against the possibility of failure 

is a necessity. Quadcopter control, even with four propellers functioning, is a complex problem 

because it is an under-actuated and highly non-linear system. Various control algorithms like PID 

and feedback linearization are used for the purpose of control. The control problem becomes more 

complex when there is complete loss of one or more propellers. The first stage in devising an 

algorithm for such a case is fault detection. If left unchecked, the fault leads to the failure of the 

system. In this case, the loss of a propeller is the fault. After detecting the nature of the fault and 

the component in which the fault has occurred, the next stage is replacing the model of the system 

with a new model which takes into account the effect of the fault. The original model does not 

accurately represent the behavior of the system in the event of a fault. Finally, a controller should 

be devised to control the system represented by the new model. The controller used for this purpose 

should ensure that the quadcopter stays in flight regardless of the failure of a rotor and that its 

motion could be controlled sufficiently enough to land it safely on a desired location in the vicinity. 

The quadcopter has to maneuver through obstacles at times. Image processing is used for this 

purpose in this project. One variant of the model involves generating a path through a maze.  The 

image (resolution: 50x50) of the maze is fed into MATLAB as a 50x50x3 array. Each pixel 

containing an obstacle is assigned a high cost. The cost assigned to the pixel reduces as the 

quadcopter move away from the obstacles. The aim is to move from the source to the destination 

while minimizing the cost. The path thus obtained would not only be devoid of obstacles, but also 

be at a safe distance from them.   

Another variant involves scanning the image for safe landing points in case failure occurs. Given 

the landing points, the one nearest to the quadcopter at the time of failure could be found out using 

a simple distance formula. But this may not always be the most suitable landing point. The velocity 

of the quadcopter when the failure occurs should also be taken into account.  Instead of going to 

the nearest landing point, a better alternative is to move to the one which can be reached in the 

shortest time. 
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Chapter 2 - Literature Survey 
 

The employment of quadcopters in challenging applications like rescue, surveillance comes from 

its ability to perform aggressive maneuvers and follow complex trajectory in 3D space. For these 

applications, precise angle handling of quadcopters is important. This calls for a clear 

understanding of the system dynamics before designing a controller to achieve the purpose.  

 

Mathematical modeling is the first and most critical step towards understanding the system 

dynamics and monitoring the response. The differential equations governing the quadcopter 

dynamics derived using the two most popular approaches (Newton-Euler equations and Euler-

Lagrange equations) is presented in [1]. While the derivations are listed for a simplified model, 

the paper also presents a more realistic model for the quadcopter with the inclusion of the drag 

force caused by air resistance. Other complex dynamic interactions like aerodynamic effects and 

blade flapping have been neglected due to challenges in modeling. A matrix approach for the 

derivation of governing equations is elaborated in [2]. The concept of mixed frame of reference 

for describing the state variables along with its convenience in developing the mathematical model 

is described. A more detailed study of the dominant aerodynamic effects on the quadcopter is 

addressed in [3]. The derivation for exogenous forces on the body of quadcopter, considering even 

the complex aerodynamic phenomena neglected in the simplified models used in [1] and [2] is also 

given. The steady state thrust and reaction torque (due to rotor drag) for a hovering rotor in free 

air is modelled using momentum theory. The lumped parameter approximation used for thrust and 

reaction torque expressions is shown here, with the constant value obtained from static thrust tests. 

The dynamic model considering flapping dynamics and rotor stiffness for induced drag is 

presented here, though these terms are minor considerations from robotics perspective. It is 

mentioned that high gain control can dominate all the secondary aerodynamic effects, and high 

performance control can be achieved using the simple static thrust model. 

 

Different control methods for attitude stabilization have been researched, including PID controllers 

([1], [3], [5] and [8]), back-stepping controller [4], sliding mode controller ([4] and [12]), linear 

quadratic regulator ([8] and [10]) and feedback linearization control ([9], [10], [11] and [12]). A 

hierarchical control approach is implemented in [3], with nested feedback loops as shown in the 

figure. The control problem is decoupled into position controller and attitude controller, with the 

position controller providing the set-points to the attitude controller.  
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Figure 1: Control architecture (taken from [3])   

An exponentially converging attitude controller is presented considering the measure of error in 

rotations. A skew-symmetric matrix is generated to go from actual attitude vector to the desired 

attitude vector. For small deviations from the hover position, the error matrix is linearized and a 

PD controller gives satisfactory performance. The control law for large deviations is also given, 

where the error matrix is not linearized. A much simpler PD controller is implemented in [1], 

where the expression for thrust and torque components are obtained from the error in attitude 

values, and the individual rotor speeds are calculated from the thrust and torque commands. Here, 

the motor dynamics is neglected while deriving the force and torque expressions from the motor-

propeller system. A PID controller with an additional term for angular acceleration feedback is 

used for attitude control in [5]. This additional term allows the gains to significantly increase, 

thereby yielding higher bandwidth. A first order time delay in thrust is also included in the model 

for controlling each angle.  

Among the nonlinear controllers, the most popular approach is feedback linearization control 

which in turn has two approaches. Both the approaches are discussed in [10] - Exact linearization 

and non-interacting control via dynamic feedback and Dynamic inversion with zero-dynamics 

stabilization. The former approach involves the use of dynamic feedback control law, and the 

nonlinear system cannot be solved using static feedback control. With the position variables 

chosen as output function, the thrust input is delayed till its second derivative and the system is 

extended to include the thrust input and its first derivative as the system states. The extended 

system fulfills the condition for feedback linearization and can be transformed via dynamic 

feedback into a system which is fully Linear and controllable. The latter approach uses attitude 

variables as the output variables, and dynamic inversion is carried out with small angle 

approximation. Here, the attitude variables are differentiated till the input terms appear and the 

system is not extended.  The paper also shows the implementation of Linear Quadratic Regulator 

(LQR) on the quadcopter, where model linearization is performed using small angle 

approximation, and the LQR function in Matlab is used to solve the algebraic equation using 

Riccati’s method and obtain the control gains.  

 

Feedback linearization with position variables and yaw angle as output terms of interest is also 

shown in [12], where the equations are differentiated twice till the input terms appear. Repeated 

differentiation of dynamic equations causes it to be very sensitive to noise, along with high cost of 
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computation. Here, the computation is reduced by assuming small angle approximation which also 

lowers the extent of nonlinearity in the system. Feedback linearization by dynamic inversion is 

discussed in [10] and [11], where the attitude variables are considered as outputs of interest. A two 

layer architecture is adopted for structured tracking, with a dynamic inversion inner loop and an 

internal dynamics stabilization outer loop. Dynamic inversion is carried out with small angle 

approximations for the Euler angles, which gives a simplified expression for the matrix to be 

inverted. A back stepping approach is used in [10] to design the linear controller for the linearized 

dynamics and the residual dynamics. The paper also presents a detailed stability analysis for the 

two controllers. However, in [11] the traditional PD controller is used to provide the linear control 

inputs in the inner loop and a PID is designed to perform trajectory following along with internal 

dynamics stabilization.   

 

A comparative study between these different controllers for attitude stabilization and control is 

addressed in [4]. The controllers are applied to the system and analyzed separately to find the 

optimum controller for the quadcopter. As seen in the figure where total error is used to evaluate 

the performance of different controllers, the sliding mode technique proves to be the superior to 

other techniques. But the PD controller shows reasonable performance compared to the sliding 

mode technique, and as its implementation is much easier most of the literature contains PD 

controller in the model. Inverse control based on feedback linearization is also easy to implement, 

with better settling time compared to PID and sliding mode controllers though the response is 

slower.  

 
Figure 2: Comparison between controllers on the basis of total error (taken from [4]) 

A Comparison between PID control and LQR control is given in [8]. Here, multiple PID controllers 

are designed for a near hover condition neglecting the gyroscopic effects. In order to implement 

the LQR, the system is linearized around each state. Linearization around the equilibrium point 

ignoring the gyroscopic effects causes a huge drift from reality, and is avoided.  
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Feedback linearization controller and sliding mode controllers have superior performance 

compared to PID as seen in [4], and a detailed analysis between these two controllers is performed 

in [12]. While feedback linearization controller is simpler to implement, uncertainty in the dynamic 

model can severely affect performance, and even cause instability. In addition, the dependence on 

higher derivative terms of states makes it highly sensitive to external disturbances. The sliding 

mode controller is a more robust approach which compensates for model uncertainties and external 

disturbances. However, handling these uncertainties causes very high input gains and is a serious 

problem in power-limited systems like mini quadcopters. Feedback linearization controllers also 

use more efficient inputs without chattering, compared to sliding mode controller.  

 

All the above papers that implemented feedback linearization (both approaches) have used small 

angle approximation. This may hold well in near hover conditions, but for a quadcopter involved 

in trajectory following or sometimes complex motions will have the Euler angles reaching high 

values. So, a more general approach for feedback linearization is required, which will be addressed 

through this project.  

In addition to the controller, the motor dynamics and their interactions with the drag forces on the 

propellers is also modelled in [3], with a first order linear approximation. As rotor speed drives the 

dynamic model, high-quality control of the motor speed is critical for the overall control of the 

vehicle. Direct voltage control is sufficient in most cases, as the steady state motor speed is directly 

proportional to the voltage supplied. The performance of the controller is limited by the amount 

of current that can be supplied by the batteries. Assuming that the battery is able to supply the 

required current for all rotor speeds and current levels do not exceed the limiting value at any stage, 

the motor controller can be removed from the system.  

Trajectory tracking is a widely studied problem for quadcopters. A lot of literature has focused on 

nonlinear methods like input-output linearization using differential flatness theory and back-

stepping control which enables acrobatic maneuvers. For normal trajectory tracking, such 

approaches are not necessary. Trajectory control in [1] is done using a heuristic approach to 

generate a symmetric function for jounce to control the acceleration and in turn determine the 

control inputs to achieve the desired trajectory. A PD controller is integrated into the heuristic 

method for better response to the disturbances and to stabilize the quadcopter during its trajectory 

tracking. In [3], the dynamics is linearized about the desired trajectory. An acceleration vector 

command is computed to minimize the error in the trajectory. The commands for roll and pitch are 

then calculated based on this acceleration vector and desired yaw angle and fed to the attitude 

controller. A position controller without linearization is also addressed, where the position error is 

projected along the yaw axis. A trajectory planning algorithm is discussed in [3], where the 

problem is simplified by assuming differential flat theory for quadcopters that respect the dynamics 

of the under actuated system. The trajectory is generated by minimizing a cost function derived 

from jounce and yaw accelerations. Hence, real time planning is carried out to generate the optimal 

path. Another trajectory planning algorithm is illustrated in [5]. Here, a sequence of desired 
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waypoints is inputted and a dynamically feasible trajectory is generated that traverses the 

waypoints in minimum time while satisfying acceleration and velocity constraints. The controller 

consists of a piecewise PI control in the along direction, and PID in the cross track direction which 

provides the respective control inputs to follow the desired path. The controllers mentioned above 

require derivatives of the desired path to be given as input, which limits aggressive maneuvers of 

the quadcopter. This calls for a trajectory controller that does not depend on the higher order 

derivatives and can enable complex motions of the quadcopter.  

Based on the literature survey, the following objectives were established for this project: 

1. Implement a linear and nonlinear controller for attitude control of a quadcopter, and 

perform a comparative study for the same.  

2. Integrate a trajectory controller into the attitude controller, to follow the path commands 

given by the trajectory planner to the nearest landing point. Determine the coordinates of 

the landing points in the inputted map using image processing and identify the landing site 

nearest to the point of failure.  

3. Develop a trajectory planning algorithm that helps traverse a maze without hitting the walls 

and test the trajectory controller for this complex trajectory.  

4. Develop a failure detection module for the quadcopter to enable switching of controllers in 

order to ensure stability of the system.  
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Chapter 3 – Methodology 
 

3.1 Mathematical model of quadcopter  

 

The kinematics and dynamics of a quadcopter can be clearly understood by considering two frames 

of reference: earth inertial frame { O } and body fixed frame { B }. The earth inertial frame is 

defined with gravity pointing in the negative z direction, and the coordinate axes of the body frame 

are along the arms of the quadcopter. 4 DC motors are placed at the extremities of all the arms, 

with a propeller mounted on them to provide the required thrust. In the structure shown in figure 

3, Motors 1 and 3 rotate in the counter-clockwise direction with angular velocities ω1 and ω3, 

whereas motors 2 and 4 rotate in the clockwise direction ω2 and ω4. 

 

Figure 3: Inertial and body frames of quadcopter (taken from [1]) 

 

The absolute position of the center of mass of the quadcopter is expressed in the inertial frame as               

ε = [ X  Y  Z ] T . The attitude or the angular position is defined in the inertial frame with the 

‘roll-pitch-yaw’ Euler angles η = [ Φ  θ  Ψ ] T . The linear velocities VB = [ VX  VY  VZ ] T 

and angular velocities ν = [ P  Q  R ]T are defined in the body frame. 

The relationship between these two frames is expressed using the rotation matrix 𝑅1 

𝑅1 = [

𝐶𝛹𝐶𝜃 𝐶𝛹𝑆𝜃𝑆𝛷 − 𝑆𝛹𝐶𝛷 𝐶𝛹𝑆𝜃𝐶𝛷 + 𝑆𝛹𝑆𝛷

𝑆𝛹𝐶𝜃 𝑆𝛹𝑆𝜃𝑆𝛷 + 𝐶𝛹𝐶𝛷 𝑆𝛹𝑆𝜃𝐶𝛷 − 𝐶𝛹𝑆𝛷

−𝑆𝜃 𝐶𝜃𝑆𝛷 𝐶𝜃𝐶𝛷

]         (3.1) 

 

Where Cθ = cos(θ) and Sθ = sin(θ).  R1  is orthogonal, which implies R-1 = RT which is the 

rotation matrix from { B } to { O }. 
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Since all the motors are identical, the derivation is explained for a single one. The thrust acting on 

the quadcopter by a single motor-propeller system is given by momentum theory: 

                                       𝑇𝑖 = 𝐶𝐷𝜌𝐴𝑟2𝜔𝑖
2                               (3.2) 

Where CD is thrust coefficient of the motor, ρ is the density of air, A is the cross-sectional area of 

the propeller’s rotation, r is the radius of rotor and ω1 is the angular speed of the rotor. For simple 

flight motion, a lumped parameter approach is considered to simplify the above equation to 

                                              𝑇𝑖 = 𝐾𝜔𝑖
2                                     (3.3) 

Combining the thrust from all the 4 motor-propeller system, the net thrust in the body frame Z 

direction is given by: 

                                             𝑇 = 𝐾 ∑𝜔𝑖
2                                  (3.4) 

Therefore, the net thrust acting on the quadcopter in the body frame is: 

                                       𝐹𝐵 = [0 0 𝑇]𝑇                           (3.5) 

In addition to thrust, a drag force also acts on the quadcopter which is a resisting force. It has 

components along the coordinate axes in the inertial frame directly proportional to the 

corresponding velocities. The drag force is given in the component form as 

                                  𝐹𝐷 = [

𝐴𝑥 0 0
0 𝐴𝑦 0

0 0 𝐴𝑧

] [
�̇�
�̇�
�̇�
]                    (3.6) 

where Ax, Ay and Az are the drag coefficients in the x, y and z directions. 

If all the rotor velocities are equal, the quadcopter will experience a force in z direction will move 

up, hover or fall down depending on the magnitude of the force relative to gravity. The moments 

acting on the quadcopter cause pitch, roll and yaw motion. Pitching moment MΦ occurs due to 

difference in thrust produced by motors 2 and 4. Rolling moment Mθ occurs due to difference in 

thrust produced by motors 1 and 3. 

                                        𝑀𝛷 = 𝐿(𝑇4 − 𝑇2)                            (3.7) 

                                       𝑀𝜃 = 𝐿(𝑇3 − 𝑇1)                             (3.8) 

in which L is the distance between the center of propeller and the center of quadcopter. 

Yawing moment MΨ is caused by the drag force acting on all the propellers and opposing their 

rotation. Again from the lumped parameter approach,  
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                                   𝜏𝑀𝑖 = 𝐵𝜔𝑖
2 + 𝐼𝑅�̇�𝑖                             (3.9) 

where τM1 is the torque produced by motor 1, B is the torque constant, IR is the inertia moment of 

rotor. The effect of 𝜔1̇ is very small and can be neglected. 

                          𝑀𝜓 = 𝐵(−𝜔1
2 + 𝜔2

2 − 𝜔3
2 + 𝜔4

2)               (3.10) 

The rotational moment acting on the quadcopter in the body frame is: 

                                  𝑀𝐵 = [𝑀𝛷 𝑀𝜃 𝑀𝜓]𝑇                      (3.11) 

There is also a rotational drag which is a resistive torque that acts on the body frame which is 

proportional to the body from angular velocities. The rotational drag is given by: 

                                          𝑀𝑅 = [𝐴𝑟𝑃 𝐴𝑟𝑄 𝐴𝑟𝑅]𝑇                            (3.12) 

where Ar is the rotational drag coefficient. 

The model presented here has been simplified by ignoring several complex effects like, blade 

flapping (deformation of blades at high velocities and flexible materials), surrounding wind 

velocities etc. 

Newton-Euler formulation is used to derive the dynamic equations of motion for the quadcopter. 

The quadcopter is assumed to have a symmetrical structure, so the Inertia matrix is diagonal and 

time-invariant, with IXX = IYY. 

                                   𝐼 =  [

𝐼𝑋𝑋 0 0
0 𝐼𝑌𝑌 0
0 0 𝐼𝑍𝑍

]                            (3.13) 

In the body frame, the force producing the acceleration of mass m 𝑉�̇�  and the centrifugal force ν 

×( m VB ) are equal to the gravity RTG and the total external thrust FB and the aero dynamical 

drag force RTFD.  

      𝑚 𝑉�̇� +  𝜈 × ( 𝑚 𝑉𝐵  ) =  𝑅𝑇𝐺 + 𝐹𝐵 − 𝑅𝑇𝐹𝐷            (3.14) 

In the case of a quadcopter, it is convenient to express the dynamics with respect to a mixed frame 

{ M } with the translational dynamics with respect to the inertial frame and { O } and the rotational 

dynamics with respect to the body frame { B }. 

In the inertial frame, centrifugal effects are negligible. The only forces coming into play are the 

gravitational force, thrust, drag and acceleration of the mass of quadcopter. 
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                                    𝑚 𝜀 ̈ =  𝐺 + 𝑅 𝐹𝐵 − 𝐹𝐷 (3.15) 

             

Rewriting this,  

                            [
�̈�
�̈�
�̈�
] =  [

0
0

−𝑔
] + 𝑅 

𝐹𝐵  

𝑚
−

𝐹𝐷

𝑚
 (3.16) 

        

Making the following substitution and taking the component form gives the dynamic equation for 

translational motion:  

                                          [
𝑋
�̇�
�̇�
]

̇

= [
𝑈
𝑉
𝑊

]                                         (3.17) 

�̇� =  (sin𝛷 sin𝛹 + cos𝛷 sin 𝜃 cos𝛹)
𝑇

𝑚
−

𝐴𝑥

𝑚
𝑈 (3.18 a) 

�̇� =  (− 𝑠𝑖𝑛 𝛷 𝑐𝑜𝑠 𝛹 + 𝑐𝑜𝑠 𝛷 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛹)
𝑇

𝑚
−

𝐴𝑦

𝑚
𝑉 (3.18 b) 

�̇� =  −𝑔 + ( 𝑐𝑜𝑠 𝛷 𝑐𝑜𝑠 𝜃)
𝑇

𝑚
−

𝐴𝑧

𝑚
𝑊 

 

(3.18 c) 

 

Again, considering the rotational dynamics in the body frame, the angular acceleration of the 

inertia I �̇�, the centripetal forces ν × (I ν) and the gyroscopic forces Ʈ are equal to the external 

torque MB and the torque generated due to aero dynamic drag. 

                    𝐼 �̇� +  𝜈 × ( 𝐼 𝜈 )  +  Ʈ =  𝑀𝐵 − 𝑀𝐷                          (3.19) 

Rewriting this equation, 

�̇� = 𝐼−1 (−[
𝑃
𝑄
𝑅
] × [

𝐼𝑋𝑋𝑃
𝐼𝑌𝑌𝑄
𝐼𝑍𝑍𝑅

] − 𝐼𝑅 [
𝑃
𝑄
𝑅
] × [

0
0
1
]𝛺 +  𝑀𝐵 − 𝑀𝐷)         (3.20) 

Where Ω = - ω1 + ω2 - ω3 + ω4 and 𝐼𝑅  is the rotational inertia of each motor. 

Writing in component form, 
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�̇� =  (
𝐼𝑋𝑋 − 𝐼𝑌𝑌

𝐼𝑍𝑍
)𝑄𝑅 −

𝐼𝑅
𝐼𝑋𝑋

𝑄𝛺 + 
𝑀𝛷

𝐼𝑋𝑋
−

𝐴𝑟

𝐼𝑥𝑥
𝑃 (3.21 a) 

�̇� =  (
𝐼𝑍𝑍 − 𝐼𝑋𝑋

𝐼𝑌𝑌
)𝑃𝑅 −

𝐼𝑅
𝐼𝑌𝑌

𝑃𝛺 + 
𝑀𝜃

𝐼𝑌𝑌
−

𝐴𝑟

𝐼𝑦𝑦
𝑄 (3.21 b) 

�̇� =  (
𝐼𝑋𝑋 − 𝐼𝑌𝑌

𝐼𝑍𝑍
)𝑃𝑄 + 

𝑀𝛹

𝐼𝑍𝑍
−

𝐴𝑟

𝐼𝑧𝑧
𝑅 

 

(3.21 c) 

 

The transformation of angular velocities from body frame to inertial frame is given by: 

[
�̇�
�̇�
�̇�

] =  

[
 
 
 
1 𝑠𝑖𝑛∅𝑡𝑎𝑛𝜃 𝑐𝑜𝑠∅𝑡𝑎𝑛𝜃
0 𝑐𝑜𝑠∅ −𝑠𝑖𝑛∅

0
𝑠𝑖𝑛∅
𝑐𝑜𝑠𝜃

𝑐𝑜𝑠∅
𝑐𝑜𝑠𝜃 ]

 
 
 
 [

𝑃
𝑄
𝑅
] (3.22) 

 

Using the complete equations of motion describing the dynamics of the system, a quadcopter plant 

is created in Simulink using the Level-2 S-Function block. For the plant, the 4 rotor speeds {ω1, 

ω2, ω3, ω4 } are considered as the inputs and the 12 states in the mixed frame { U, V, W, P, Q, 

R, Φ, θ, Ψ, X, Y, Z } as the outputs. 

 

Figure 4: Quad plant Simulink Block 

Using the equation of thrust and torque mentioned in dynamics of quadcopter and the above four 

equations of thrust and torques, the values of the angular velocities at each of the four rotors are 

obtained and shown in Equation 3.25. 
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(

𝑇
𝑚𝜙

𝑚𝜃

𝑚𝜓

) =

(

 
 

   𝐾 𝐾   𝐾     𝐾

     0  𝐾𝐿 0 −𝐾𝐿

−𝐾𝐿 0 𝐾𝐿 0
−𝐵 𝐵 −𝐵 𝐵

)

 
 

(

 
 

𝜔1
2

𝜔2
2

𝜔3
2

𝜔4
2
)

 
 

 (3.23) 

 

Taking inverse of the above matrix, the following equations are obtained for individual rotor 

speeds: 

𝜔1
2 =

𝑇

4𝑘
−

𝑚𝜽

2𝑘𝑙
−

𝑚𝝍

4𝑏
 (3.24 a) 

𝜔2
2 =

𝑇

4𝑘
−

𝑚𝝓

2𝑘𝑙
+

𝑚𝝍

4𝑏
 (3.24 b) 

𝜔3
2 =

𝑇

4𝑘
+

𝑚𝜽

2𝑘𝑙
−

𝑚𝝍

4𝑏
 (3.24 c) 

𝜔4
2 =

𝑇

4𝑘
+

𝑚𝝓

2𝑘𝑙
+

𝑚𝝍

4𝑏
 (3.24 d) 

 

These 𝜔 are then used to calculate the current states of the quadcopter as mentioned before. This 

model is used to develop both the attitude and trajectory controller along with implementation of 

the trajectory planner. The model described in the following session is a special case, and is used 

only to test the failure detection module (Section 3.6).  

 

3.2 Mathematical model of quadcopter with one failed rotor 

 

The dynamics of the quadcopter remains almost the same in the case of failure of one rotor. 

However, the control problem becomes increasingly complex. It becomes impossible to control 

the full attitude of a quadcopter with only three functional rotors. Without loss of generality, it can 

be assumed that the failed rotor is rotor number 2. This means that the torque control input MΦ is 

lost as the torque can now be provided only in one direction. So the spinning of rotor 4 now creates 

an unbalanced torque. In order to avoid the toppling of the quad, the rotor 4 velocity must be 

minimized and this creates an unbalance in yaw. Any attempt to maintain the quad in hover in such 

a case implies that the yaw control must be relinquished. The total number of control inputs reduces 

to three. This changes only the right-hand side of the dynamical equations which deals with 

external driving forces and torques which are the control inputs.  

 



23 

 

With rotor 2 encountering failure, ω2 = 0. Therefore net thrust is given by 

                                      𝑇 = 𝐾(𝜔1
2 + 𝜔3

2 + 𝜔4
2) (3.25)  

 

and thrust due to each rotor is  𝑇𝑖 = 𝐾𝜔𝑖
2,    i = 1,3,4,  and the torques are given by 

                         𝑀𝛷 = 𝐿 ∗ 𝑇4 (3.26) 

                          𝑀𝜃 = 𝐿(𝑇3 − 𝑇1) (3.27) 

                          𝑀𝜓 = 𝐵(−𝜔1
2 + 𝜔2

2 − 𝜔3
2 + 𝜔4

2) (3.28) 

 

As MΦ is no longer a control input, the equation for P is modified to express MΦ in terms of the 

other control inputs. The remaining equations stay the same. The modified equations governing 

the rotational dynamics are given below 

�̇� =  (
𝐼𝑋𝑋 − 𝐼𝑌𝑌

𝐼𝑍𝑍
)𝑄𝑅 −

𝐼𝑅
𝐼𝑋𝑋

𝑄𝛺 + 
0.5𝑙 ( 𝑇 −

𝑀𝜓

𝑑
)

𝐼𝑋𝑋
−

𝐴𝑟

𝐼𝑥𝑥
𝑃 

(3.29 a) 

�̇� =  (
𝐼𝑍𝑍 − 𝐼𝑋𝑋

𝐼𝑌𝑌
)𝑃𝑅 −

𝐼𝑅
𝐼𝑌𝑌

𝑃𝛺 + 
𝑀𝜃

𝐼𝑌𝑌
−

𝐴𝑟

𝐼𝑦𝑦
𝑄 (3.29 b) 

�̇� =  (
𝐼𝑋𝑋 − 𝐼𝑌𝑌

𝐼𝑍𝑍
)𝑃𝑄 + 

𝑀𝛹

𝐼𝑍𝑍
−

𝐴𝑟

𝐼𝑧𝑧
𝑅 

 

(3.29 c) 

The angular velocities of rotors required for desired values of control inputs are given by: 

[

𝑇
𝑀𝜃

𝑀𝜓

] = 𝐾 [
1 1 1
−𝑙 −𝑙 0
−𝑑 −𝑑 𝑑

] [

𝜔1
2

𝜔3
2

𝜔4
2

] (3.30) 

 

Taking the inverse, we get the equations for the three rotor speeds as 

𝜔1
2 =

𝑇

4𝑘
−

𝑚𝜽

2𝑘𝑙
−

𝑚𝝍

4𝑏
 (3.31 a) 

𝜔3
2 =

𝑇

4𝑘
+

𝑚𝜽

2𝑘𝑙
−

𝑚𝝍

4𝑏
 

(3.31 b) 

𝜔4
2 =

𝑇

2𝑘
+

𝑚𝝍

2𝑏
 

(3.31 c) 
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3.3 Attitude controller 
 

A quadcopter consists of mainly six outputs of interest (Φ, θ, Ψ, X, Y, Z) with only four control 

inputs. This is solved by decoupling it into two distinct control loops (figure 5), inner loop dealing 

with the attitude variables and the outer variable dealing with the position variables. The angular 

motion of the quadcopter does not depend on the translational components, whereas the 

translational motion depends on the Euler angles. So the aim is to first control the rotational 

behavior due to its independence and then control the translational behavior.  

Controlling vehicle attitude requires sensors to measure vehicle orientation, actuators to apply the 

torques needed to re-orient the vehicle to a desired attitude, and algorithms to command the 

actuators based on (1) sensor measurements of the current attitude and (2) specification of a desired 

attitude. Once the attitude control is designed and optimized, it can be integrated with the trajectory 

controller.  

The block diagram for attitude controller is as shown below:  

 

 

Figure 5: Block diagram of Attitude Controller  

A lot of different methods have been studied to achieve autonomous flight, from which three 

methods (both linear and nonlinear) are discussed below. A comparative study is carried out to 

identify the most optimal controller for attitude stabilization.  

 

3.3.1 PID controller  
 

Of all the controllers, a PID Controller is the easiest to implement. The general form of PID 

controller is 
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𝑒(𝑡) = 𝑥𝑑(𝑡) − 𝑥(𝑡) (3.32 a) 

𝑢(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼 ∫𝑒(𝜏)𝑑𝜏 + 𝐾𝐷

𝑑

𝑑𝑡
𝑒(𝑡) (3.32 b) 

 

Where u(t) is the control input and e(t) is the error between desired state xd (t) and present state 

x(t), and KP, KI and KD are the parameters for the proportional, integral and derivative elements 

of the PID controller. The desired values of attitude are fed from an attitude command block.  

The standard PID control technique is applied on the nonlinear system directly, with an individual 

PID block for each attitude variable to control it independently. This does not require the model to 

be linearized about the hover condition, and can thus stabilize the quadcopter on the advent of 

strong perturbations.  

A phi controller is basically an attitude controller which is used to control the attitude of the 

quadcopter about the X axis. Using this controller, the 𝜙 angle is stabilized. It can also be used to 

set ϕ to a particular value, which would help in the motion of the quadcopter in Y direction. 

Similarly, the theta controller and psi controllers are used to stabilize θ and ψ attitudes of the 

quadcopter. The corresponding torques are calculated using the following equations: 

 

𝑚𝜙 = 𝐼𝑥𝑥  ( 𝐾𝜙,𝐷𝑒�̇�(𝑡) + 𝐾𝜙,𝑃𝑒𝜙(𝑡) + 𝐾𝜙,𝐼 ∫𝑒𝜙(𝑡)𝑑𝑡 ) (3.33 a) 

𝑚𝜃 = 𝐼𝑦𝑦(𝐾𝜃,𝐷𝑒�̇�(𝑡) + 𝐾𝜃,𝑃𝑒𝜃(𝑡) + 𝐾𝜃,𝐼 ∫𝑒𝜃(𝑡)𝑑𝑡) (3.33 b) 

𝑚𝜓 = 𝐼𝑧𝑧(𝐾𝜓,𝐷𝑒�̇�(𝑡) + 𝐾𝜓,𝑃𝑒𝜓(𝑡) + 𝐾𝜓,𝐼 ∫𝑒𝜓(𝑡)𝑑𝑡) (3.33 c) 

 

Where    𝑒𝜙(𝑡) = 𝜙𝑑(𝑡) − 𝜙(𝑡),  𝑒𝜃(𝑡) = 𝜃𝑑(𝑡) − 𝜃(𝑡) and 𝑒𝜓(𝑡) = 𝜓𝑑(𝑡) − 𝜓(𝑡). 

The Z controller is used to stabilize the altitude of the quadcopter to a desired value. Similar to the 

angular attitude controllers, this controller also employs a PID to control the altitude. Here, the 

thrust required is calculated using the following equation: 

𝑇 =  𝑚𝐶𝜃𝐶𝜙 [𝑔 + 𝐾𝑧,𝐷𝑒�̇�(𝑡) + 𝐾𝑧,𝑃𝑒𝑧(𝑡) + 𝐾𝑧,𝐼 ∫𝑒𝑧(𝑡)𝑑𝑡]  (3.34) 

 

Where 𝑒𝑧(𝑡) = 𝑧𝑑(𝑡) − 𝑧(𝑡). 
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Since thrust is calculated in the body frame while 𝑔 and other PID terms are in the inertial frame, 

a rotational matrix is applied to the terms in the inertial frame which is given by 𝐶𝜃𝐶𝜙 where 𝐶 

stands for cos function. 

 

3.3.2 Feedback linearization controller  
 

Feedback linearization control is a popular nonlinear control approach, where the nonlinear system 

is algebraically transformed into (fully or partly) linear ones by cancelling the nonlinearities. Most 

feedback linearization techniques are based either on input-output linearization or input-state 

linearization. We have adopted the input-output linearization in our work. Input-Output 

linearization involves the repeated differentiation of the output variables till the input term appears, 

the last derivative being the rth one. This will help in obtaining a mapping between the transformed 

inputs and the outputs. We use the concept of dynamic inversion to the system given by [], which 

yields the inner loop that feedback linearizes the system from the control input to the output. The 

output variables not considered above is called residual or internal dynamics. Dynamic inversion 

need not necessarily yield the internal dynamics stable, which will then require another outer 

stabilizing loop. 

Consider a SISO (Single Input Single Output) system with state x, input u and output y whose 

dynamics are given by 

𝑥 ̇ = 𝑓(𝑥) + 𝑔(𝑥)𝑢 (3.35) 

𝑦 = ℎ(𝑥) (3.36) 

The derivative of the output y can be expressed as 

�̇� =
𝜕ℎ

𝜕𝑥
[𝑓(𝑥) + 𝑔(𝑥)𝑢] (3.37 a) 

 

The derivative of h along the trajectory of the state x is known as the Lie Derivate and equation 

(3.41) can be written in terms of lie derivative as 

�̇� =
𝜕ℎ

𝜕𝑥
[𝑓(𝑥) + 𝑔(𝑥)𝑢] = 𝐿𝑓ℎ(𝑥) + 𝐿𝑔ℎ(𝑥)𝑢 (3.37 b) 

 

The output y is differentiated continuously until input terms appear in the differential equation. 

Generally, the ith derivative of y is expressed in terms of lie derivative as 
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𝑦(𝑖) = 𝐿𝑓
𝑖 ℎ(𝑥) + 𝐿𝑔𝐿𝑓

𝑖−1ℎ(𝑥)𝑢 (3.38) 

The above equation can be linearized through dynamic inversion, choosing u as 

𝑢 =
1

𝐿𝑔𝐿𝑓
𝑖−1ℎ(𝑥)

[−𝐿𝑓
𝑖 ℎ(𝑥) + 𝑣] (3.39) 

 

This yields the simple output equation 

𝑦𝑖 = 𝑣 (3.40) 

The concepts used for the SISO systems can be extended to MIMO systems. In particular, we 

consider square systems having the same number of inputs and outputs. Suppose that an input term 

first appears in the rth derivative of the ith output. Then, the equation for the ith output is expressed 

as 

𝑦𝑖
(𝑟𝑖) = 𝐿𝑓

𝑟𝑖ℎ𝑖(𝑥) + ∑𝐿𝑔𝑗
𝐿𝑓
𝑟𝑖−1

ℎ𝑖(𝑥)𝑢𝑗

𝑚

𝑗=1

 (3.41) 

The set of differential equations that corresponds to the input – output relations may be expressed 

in the matrix form as 

[
𝑦𝑖

(𝑟𝑖)

⋮

𝑦𝑚
(𝑟𝑚)

] = [

𝐿𝑓
𝑟1ℎ1(𝑥)

⋮
𝐿𝑓
𝑟𝑚ℎ𝑚(𝑥)

] + 𝑬(𝑥) [

𝑢1

⋮
𝑢𝑚

] (3.42) 

  

Where E(x) is an m x m coefficient matrix of the inputs. 

This set of equations can be converted to simple linear equations for the outputs by the following 

input transformation 

𝒖 = −𝑬−1

[
 
 
 
[

𝐿𝑓
𝑟1ℎ1(𝑥)

⋮
𝐿𝑓
𝑟𝑚ℎ𝑚(𝑥)

] + 𝒗

]
 
 
 
 (3.43) 

 

This yields equations of the form 

𝑦𝑖
(𝑟𝑖) = 𝑣𝑖  (3.44) 
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Thus, the inversion-based control law has the capability in shaping the output response by simply 

designing the new controls vi to get the desired output. 

To implement this controller, we assume the system is decomposed into two sub models – M1 with 

states X1 = [Z, Φ, θ, Ψ, W, P, Q, R] and M2 with states X2 = [X, Y, U, V]. 

Consider the inner loop with the sub model M1 and output variables  

Y1 = [Z Φ θ Ψ] T (3.45) 

The first derivative w.r.t time does not contain input terms, as evident from the following 

equations. The expressions are obtained from Equations 3.17 and 3.22. 

[

�̇�
�̇�
�̇�
�̇�

] =  

[
 
 
 
 
1
0

0
1

0 0
𝑠𝑖𝑛 ∅ 𝑡𝑎𝑛 𝜃 𝑐𝑜𝑠 ∅ 𝑡𝑎𝑛 𝜃

0 0 𝑐𝑜𝑠 ∅ −𝑠𝑖𝑛 ∅

0 0
𝑠𝑖𝑛 ∅

𝑐𝑜𝑠 𝜃

𝑐𝑜𝑠 ∅

𝑐𝑜𝑠 𝜃 ]
 
 
 
 

 [

𝑊
𝑃
𝑄
𝑅

] (3.46) 

 

The transformation matrix is denoted by MatW. 

Differentiating this again gives:  

𝑌1̈ = [

�̈�
�̈�
�̈�
�̈�

] =  
𝑑

𝑑𝑡
 (𝑀𝑎𝑡𝑊) ∗  [

𝑊
𝑃
𝑄
𝑅

] +  𝑀𝑎𝑡𝑊 ∗ [

�̇�
�̇�
�̇�

�̇�

] (3.47) 

 

The expressions of �̇�,  �̇�,  �̇�, and  �̇� contain input terms are obtained from Equations 3.18 c 

and 3.21.  
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[

�̇�
�̇�
�̇�

�̇�

] =  

[
 
 
 
 
 
 
 

−𝑔

(
𝐼𝑋𝑋 − 𝐼𝑌𝑌

𝐼𝑍𝑍
)𝑄𝑅 −

𝐼𝑅
𝐼𝑋𝑋

𝑄𝛺

 (
𝐼𝑍𝑍 − 𝐼𝑋𝑋

𝐼𝑌𝑌
)𝑃𝑅 −

𝐼𝑅
𝐼𝑌𝑌

𝑃𝛺

(
𝐼𝑋𝑋 − 𝐼𝑌𝑌

𝐼𝑍𝑍
)𝑃𝑄

]
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 ( 𝑐𝑜𝑠 𝛷 𝑐𝑜𝑠 𝜃)

1

𝑚
0 0 0

0
1

𝐼𝑋𝑋
0 0

0
0

0
0

1

𝐼𝑌𝑌

0

0
1

𝐼𝑌𝑌]
 
 
 
 
 
 

[

𝑇
𝑀𝛷

𝑀𝜃

𝑀𝛹

] 

(3.48) 

= 𝑀𝑎𝑡𝐶 + 𝑀𝑎𝑡𝐷 ∗ 𝑈  

 

From the above equations, we obtain the general form for 𝑌1̈ 

𝑌1̈ = 𝐴1(𝑿𝟏) + 𝐵1(𝑿𝟏) ∗ 𝑈 (3.49) 

 

Where   𝐴1(𝑿𝟏) = 𝑀𝑎𝑡𝐴 = 
𝑑

𝑑𝑡
 𝑀𝑎𝑡𝑊 ∗ [

𝑊
𝑃
𝑄
𝑅

] + 𝑀𝑎𝑡𝑊 ∗ 𝑀𝑎𝑡𝐶    and 

          𝐵1(𝑿𝟏) = 𝑀𝑎𝑡𝐵 = 𝑀𝑎𝑡𝑊 ∗ 𝑀𝑎𝑡𝐷 

The relative degree of the system is calculated as eight, whereas number of states of the system is 

twelve. To ensure the stability of the whole system, the remaining internal dynamics must be 

stabilized. But if we consider the sub model that has eight states, the sub model is stabilized.  

Based on the general form, the input to the system can be written as: 

𝑈 =  𝛼(𝑿𝟏) + 𝛽(𝑿𝟏) ∗ 𝜗 (3.50) 

 

where  𝛼(𝑿𝟏) =  −𝐵1(𝑿𝟏)
−1 ∗  𝐴1(𝑿𝟏) 
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and     𝛽(𝑿𝟏) =  𝐵1(𝑿𝟏)
−1  

This on simplification yields    𝑌1̈ =  𝜗, which is a linear system.  

The new input 𝜗 =  [𝜗1 𝜗2 𝜗3 𝜗4] 
𝑇 can be designed using any of the standard linear control 

techniques.  

In the first approach, we used PD controller to design the 4 linear control inputs, where the error 

term is given by 𝑒 =  𝑍𝑑 − 𝑍  and so on. The control gains are tuned manually to obtain the 

desired response.  

 

3.3.3 Linear Quadratic Regulator  
 

In the second approach, the control inputs are designed using the Linear Quadratic Regulator 

(LQR) approach. LQR is an optimal control technique used to determine the control signal which 

drives the system states to the desired value along with minimizing a cost function. Hence, the 

control effort in case of LQR is the least. 

Consider a dynamic system of the form:  

�̇� = 𝐴 . 𝑿 + 𝐵 . 𝑈 (3.51 a) 

𝒀 = 𝐶 . 𝑿 (3.51 b) 

 

The cost function for this optimal problem is given by: 

 

𝐽 = ∫ {𝑈(𝑡)𝑇 . 𝑅 .  𝑈(𝑡) + [𝑿(𝑡) − 𝑿𝒅(𝑡)]
𝑇  . 𝑄 . [𝑿(𝑡) − 𝑿𝒅(𝑡)] } 𝑑𝑡

∞

𝑡0

 

 

(3.52) 

Where R is the cost of actuators and Q is the cost of the state.  

The control input U that minimizes the cost function is a static linear feedback as: 

 𝑈 =  −𝐾 . [𝑿(𝑡) − 𝑿𝒅(𝑡)]  

 

(3.53) 

The value of K is obtained by solving the Riccati’s algebraic equation, performed by Matlab using 

the LQR function: 

𝐾 = 𝐿𝑄𝑅(𝐴, 𝐵, 𝑄, 𝑅)         (3.54) 
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The decomposition of the dynamic model into sub models M1 and M2 is done in this case too, 

with the controller being designed for the sub model M1. The equations in state variable form for 

the eight states is the same as Equations 3.18 c, 3.21 and 3.22.    

The sub model M1 is linearized around the equilibrium point (near hover condition) using the 

Jacobian approach ( 𝐴𝑟 = 
𝜕

𝜕𝑥
 𝐴(0) and 𝐵𝑟 = 𝐵(0) ).  

The linearized plant dynamics is given by  

𝑿�̇� = 𝐴𝑟𝑿𝟏 + 𝐵𝑟𝑈
 (3.55 a) 

𝑌1 = 𝐶𝑿𝟏 (3.55 b) 

 

where  𝐴𝑟 = 

[
 
 
 
 
 
 
 
 
 
 
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

0 0 0 0 −
𝐴𝑧

𝑚
0 0 0

0 0 0 0 0 −
𝐴𝑟

𝐼𝑋𝑋
0 0

0 0 0 0 0 0 −
𝐴𝑟

𝐼𝑌𝑌
0

0 0 0 0 0 0 0 −
𝐴𝑟

𝐼𝑍𝑍]
 
 
 
 
 
 
 
 
 
 

 , 

             𝐵𝑟 = 

[
 
 
 
 
 
 
 
 
 
 
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1

𝑚
0 0 0

0
1

𝐼𝑋𝑋
0 0

0 0
1

𝐼𝑌𝑌
0

0 0 0
1

𝐼𝑍𝑍]
 
 
 
 
 
 
 
 
 
 

 and  
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𝐶 =  

[
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 

 

 

A function called linriz.m (Appendix A7) was written in Matlab to solve the algebraic equation 

using Riccati’s method, where the LQR in-built function was employed.  

𝐾 = 𝐿𝑄𝑅(𝐴𝑟 , 𝐵𝑟 , 𝑄, 𝑅)  (3.56) 

The 𝑄 matrix is then modified manually, the above equation is again solved to find the control 

gains until the desired response is achieved.  

 

3.4 Trajectory planning using image processing 
 

Processing of visual information from the environment is desirable for an unmanned aerial vehicle. 

This becomes a necessity when the vehicle is autonomous. This visual information is fed into the 

quadcopter processor in the form of images. Obtaining useful information from the image data is 

necessary for taking decisions in case of an autonomous vehicle. This might involve determining 

the shortest path between two locations, identifying no-fly zones or traversing an environment full 

of obstacles. Therefore, image processing has an important role to play in the future of quadcopters.  

 

3.4.1 Feasible landing point  

 

Safe landing locations are represented by black circles in the input image. The objective of this 

algorithm is to calculate the coordinates of the centres of all the black circles in this image. The 

most suitable landing point is then found out based on the current position and velocity of the 

quadcopter.      

The inputted image is converted to grayscale and then to a black and white image. A very low 

threshold, while converting to black and white, ensures that only the darkest pixels are retained 

and the rest are converted to white.The features left in the image, that are less than a nominal 
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number of pixels, are considered to be disturbances and hence filtered out. The current image 

consists of only the most prominent black features.  

The number of pixels lying on the perimeter of each of these features and the total number of pixels 

contained by each of these features (can be considered as area) can be calculated using in-built 

MATLAB functions. The metric used to decide if a given feature is a circle or not is given by: 

𝑀𝑒𝑡𝑟𝑖𝑐 =
4 ∗ 𝜋 ∗ 𝐴𝑟𝑒𝑎

(𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟)2
 

 

(3.57) 

It can be easily observed that the value of the above parameter equals 1 when the geometry is a 

circle. No two-dimensional geometry is possible for which the metric exceeds the value of 1. As 

the value of the metric approaches 1, geometry of the feature approaches that of a circle. Hence 

the metric is calculated for all the features and and the ones that surpass the threshold (0.9 in our 

case) qualify as a circle.  

The mere proximity of a landing point to the quadcopter at the time of failure is not the best 

criterion for its selection. Minimizing the time taken to reach the landing point serves the purpose 

better. The distance from the landing point to the quadcopter and velocity of the quadcopter, at the 

time of failure, both, are taken into account. Using this, a landing point is suitably selected. 

The algorithm for the above task is explained below:- 

Let θ1 be the inclination of the line joining point of failure and landing point being considered with 

respect to the x-axis in the global coordinate system. 

Let θ2 be the inclination of the velocity vector of quadcopter at point of failure with respect to the 

x-axis in the global coordinate system.  

Then,         

θ = θ1 - θ2, is the angle between the two lines. 

Now, va is the velocity of the quadcopter along the line joining point of failure and landing point, 

and vp is the velocity of the quadcopter perpendicular to it. 

𝑣𝑎 = |𝑣 ∗ 𝑐𝑜𝑠 𝜃| 

 

(3.58 a) 

𝑣𝑝 = |𝑣 ∗ sin 𝜃| 

 

(3.58 b) 

where 𝑣 is the velocity of the quadcopter at the time of failure. 

The quadcopter has a maximum limit of acceleration. To reach the landing point in the shortest 

time, it is ensured that the quadcopter’s perpendicular displacement from the line joining the point 
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of failure and the landing point, reaches zero in the same time as it reaches the landing point along 

the line.  

0 = 𝑢𝑡 +
1

2
𝑎𝑝𝑡2 

 

(3.59) 

𝑑 = 𝑢𝑡 +
1

2
𝑎𝑎𝑡2 

 

(3.60) 

Here d is the distance between the landing point and point of failure. 

Solving for t, 

(−2 ∗ 𝑣𝑎 ∗ 𝑣𝑝)

𝑢
+ 

(2 ∗ 𝑣𝑝
2 ∗ 𝑎𝑝)

𝑎𝑎
2

= 𝑑 

 

(3.61) 

Also  

𝑎𝑝
2 + 𝑎𝑎

2 = 𝑎2, 

 

(3.62) 

which is the maximum acceleration possible for the quadcopter. 

On solving these two equations using MATLAB function, the value of ap and aa is obtained.  

With the obtained accelerations along and perpendicular to the quadcopter, the shortest time 

required to move to the landing point is calculated using the equation, 

𝑡 = |
−2 ∗ 𝑣𝑝 

𝑎𝑝
| 

 

(3.63) 

Similarly, the time required for the quadcopter to move to the other landing points are also 

calculated. Then, the landing point with the shortest time required is chosen for safe landing of the 

quadcopter. 

 

3.4.2 Trajectory planning algorithm 

 

For maneuvering through the maze, a trajectory is devised from the image using a shortest path 

algorithm, called Dijkstra’s algorithm. Each pixel in the image is considered a node. Each node is 

assigned a weight based on its proximity to an obstacle. The pixels containing the obstacles have 

the highest weight and these nodes are not a part of the network. The node at the top left corner of 
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the image is called the initial node. Let the weight of node Y be the cost assigned to that node. The 

algorithm is as follows: 

1. The initial node is set to current. All the other nodes are marked unvisited. A set of all the 

unvisited nodes called the unvisited set is created. 

2. For the current node, all of its unvisited neighbors are considered and 

their tentative weights are calculated. The newly calculated tentative weight is compared 

to the current assigned value and the smaller one is assigned. 

3. After considering all of the neighbors of the current node the current node is marked as 

visited and is removed from the unvisited set. A visited node is never checked again. 

4. If the destination node has been marked visited, the algorithm is stopped. 

5. Otherwise, the unvisited node that is marked with the smallest tentative weight is selected, 

and is set as the new "current node", and the algorithm is repeated from step 2. 

Once the trajectory from the source node to the destination node is obtained, it is traced by colored 

lines using MATLAB functions. 

A time series data of the trajectory is to be fed to the quadcopter model for trajectory tracking. For 

this, the time taken to move from one node to the neighboring node is assumed to be of the ratio 

1:√2 for horizontal/vertical nodes and diagonal nodes, i.e. the time taken by a quadcopter to move 

to a diagonally adjacent node is √2 times the time it would take to move to a vertically or 

horizontally adjacent node. 

Using this assumption, the units of time required to move from the source node to the destination 

node is calculated, by adding√2, if the next adjacent node is diagonal and 1, if it is horizontal or 

vertical, to the current node in the path obtained by Dijkstra’s algorithm. 

Once the total time is computed, the actual time of flight of the quadcopter is divided by this total 

time, to get the equivalent of 1 unit in seconds. Now, having the X, Y and time data of each node 

in the path available, a time series data of the path from source node to destination node is created. 

This time series data is taken from the workspace by the Simulink block of the quadcopter model 

when the simulation is started.  

 

3.5 Trajectory Controller 

 

In this controller, the deviation from the desired path is calculated (in the body frame) at every 

instant and is fed to the succeeding blocks as the desired velocity. Using this, the desired roll and 

pitch angles are calculated. This is the underlying principle of this controller. 

The errors in X and Y positions are transformed from the inertial frame to the body frame. 
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Error in X in body frame = (𝑋𝑑 − 𝑋) 𝑐𝑜𝑠(𝜓) + (𝑌𝑑 − 𝑌) 𝑠𝑖𝑛(𝜓) 

 

(3.64 a) 

Error in Y in body frame = (𝑌𝑑 − 𝑌) 𝑐𝑜𝑠(𝜓) − (𝑋𝑑 − 𝑋) 𝑠𝑖𝑛(𝜓) 

 

(3.64 b) 

These errors are taken as the desired velocities in body frame. 

Therefore,                            

𝑈𝑑 = Error in X in body frame 

 

(3.65 a) 

 𝑉𝑑  = Error in Y in body frame 

 

(3.65 b) 

 

The next step is calculation of desired attitudes in order to feed it to the attitude controller.  

𝜃𝑑 =   𝐾𝑝,𝜃(𝑈𝑑 − 𝑈) − 𝐾𝑑,𝜃(�̇�) 

 

(3.66 a) 

𝛷𝑑 =−{𝐾𝑝,𝛷(𝑉𝑑 − 𝑉) − 𝐾𝑑,𝛷(�̇�)} 

 

(3.66 b) 

The above equations are devoid of 𝑉�̇�  and 𝑈�̇� terms. The absence of these terms permits the 

presence of non-differentiable points in the path function. 
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Chapter 4 - Simulation 

 

The dynamic model, controllers and the trajectory planners are implemented in Matlab/Simulink. 

Separate simulations are carried out for attitude control comparison, trajectory following to the 

nearest landing point and trajectory following based on the planner. The complete Simulink model 

including the path commands, trajectory controller, attitude controller and the quadcopter plant is 

shown in Appendix A15.   

The values for the parameters in the quad plant are given in Table 1. 

Parameter Value Unit 

g 9.81 m/s2 

L 0.225 m 

m 0.468 kg 

K 2.98*10-6  

d 0.0382  

B 0.114*10-6  

IXX 4.856*10-3 kg m2 

IYY 4.856*10-3 kg m2 

IZZ 8.801*10-3 kg m2 

IR 3.357*10-5 kg m2 

Table 1: Parameter values for quad plant 

 

The initial conditions given to the quadcopter states for the simulation with feasible landing point 

is mentioned in Table 2. 

State Value State Value 

X 0 m Φ 10 rad 

Y 0 m θ 12 rad 

Z 2 m Ψ 10 rad 

U 0 m/s P 0 rad/s 

V 0 m/s Q 0 rad/s 

W 0 m/s R 0 rad/s 

Table 2: Initial conditions for trajectory control simulation 1 

 



38 

 

 

The initial conditions given to the quadcopter states for the simulation with trajectory planner is 

mentioned in Table 3. 

State Value State Value 

X 1 m Φ 0 rad 

Y 1 m θ 0 rad 

Z 2 m Ψ 0 rad 

U 0 m/s P 0 rad/s 

V 0 m/s Q 0 rad/s 

W 0 m/s R 0 rad/s 

Table 3: Initial conditions for trajectory control simulation 2 

  

4.1. Simulation for attitude controller comparison 

 

The three controllers – Feedback linearization with PD controller (FBL+ PD), Feedback 

linearization with LQR (FBL+LQR), and PID controller are implemented as separate Simulink 

models and simulated. The Simulink block layout is shown in Appendices A3- A6.  

A simulation time of 50s with a variable step size is given, and Ode-45 Dormand-Prince method 

is used to solve the numerical problem.  

 

4.1.1. Attitude commands 

 

The attitude commands are provided from a block, which contains step functions for each of the 

attitude variables. The step function starts with the initial condition as shown in Table 2, and falls 

to 0 with a step time of 5s for the 3 angles and rises to 3 with the same step time for height 

command.  

 

4.1.2. Control gains 

 

For the FBL+ PD controller combination, the values of all control gains are determined through 

manual tuning. 
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Controller KP KD 

Roll 3 2 

Pitch 3 2 

Yaw 2 2 

Height 3 2 

Table 4: Gain values for attitude controller 1 

For LQR, the values of all control gains are determined through inbuilt LQR Matlab function, as 

shown in linriz.m (Appendix A7).  

Controller K1 K2 

Roll 10 0.1703 

Pitch 10 0.1703 

Yaw 10 .0267 

Height 10 2.8195 

Table 5: Gain values for attitude controller 2 

For the PID controller, the values of all 3 gains are determined through manual tuning. 

Controller KP KI KD 

Roll 6 1.5 1.75 

Pitch 5 3 3 

Yaw 6 1.5 1.75 

Height 15 10 10 

Table 6: Gain values for attitude controller 3 

 

4.2. Simulation for trajectory following – feasible landing point 

 

4.2.1. Path commands 

 

The path commands are provided by two blocks, one that guides the quadcopter to the final goal 

location and the other that guides it to the nearest landing point determined through the image 

processing module. The quadcopter’s mission is to follow the specified trajectory and stop at its 

destination with the desired attitude values. A switch is used to change the source of path 

commands, which is to be activated by the failure detection module. Here, a clock input is given 

and switching at the end of 50s is performed assuming that the failure occurs then. 
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For the initial path commands, X and Y are fed as a ramp input such that the final goal having 

coordinates (100,200) is reached within 100s. Z and Ψ are given as a constants 2m and 0 rad 

respectively. 

For the alternative path commands block, the current state is taken as input. The image processing 

module returns back the coordinates of the nearest landing location. Based on these two points, a 

ramp is created till the landing point for both X and Y. Once the actual X or Y reaches within 

0.005% of the desired value, the ramp is replaced by a step with the desired value as magnitude. 

 

Figure 6:  Desired path with switching 

4.2.2. Control gains 

 

For the position PD controller, the values for proportional and derivative gains are determined 

through manual tuning till the desired performance is achieved. 

Controller KP KD 

Φ command 0.5 0.4 

Θ command 0.36 0.45 

Table 7: Gain values for trajectory controller 

 

4.3. Simulation for trajectory following – using a trajectory planner 

 

4.3.1. Path commands 

 

The pathcr.m file, which performs the trajectory planning, is first run to obtain the path command 

data. While the desired X and Y commands are obtained as a time series data, the Z and Ψ values 
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are given as a constant function. Compared to the previous simulation, the quadcopter is made to 

follow a more complex trajectory.  

4.3.2. Control gains 

 

For the position PD controller, the values for proportional and derivative gains are determined 

through manual tuning till the desired performance is achieved. 

Controller KP KD 

Φ command 0.5 0.4 

Θ command 0.36 0.45 

Table 8: Gain values for trajectory controller 

 

4.3.3. VR Simulation 

 

The Simulink 3D Animation package provides apps for linking Simulink models and MATLAB 

algorithms to 3D graphics objects. This package can be used to visualize and verify dynamic 

system behavior in a virtual reality environment. Objects are represented in the Virtual Reality 

Modeling Language (VRML), a standard 3D modeling language. A 3D world can be animated by 

changing position, rotation, scale, and other object properties during desktop or real-time 

simulation. 

A VR simulation model of the quadcopter was created using 3D World Editor in MATLAB. This 

model could be rotated or translated about any axes. It was then implemented into the various 

SIMULINK models of the quadcopter using a VR Sink block. The phi, theta and psi states of the 

quadcopter were connected to the rotation control of the VR model and the X, Y and Z states were 

connected to the translation control. Once the SIMULINK model is run, the VR model achieves 

the corresponding motion in a given terrain which can be seen through a VR simulator. 
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Figure 7: A VR model of quadcopter during simulation (viewpoint 1) 

 

 

Figure 8: A VR model of quadcopter during simulation (viewpoint 2) 
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Chapter 5 - Results and Discussions 

  

5.1 Attitude controller comparison 
 

To compare the three different controllers used for the attitude control, a step input is provided as 

the desired value for each of the attitude variables. The comparison is done based on parameters 

like rise/fall time and percentage overshoot/undershoot.  

Looking at the step response for Φ as seen in figure 9, it is evident that LQR controller shows 

the best performance as the fall time is least and there is no significant undershoot. The 

combination of FBL and PD controller shows a comparatively slower response with some 

undershoot. PID controller shows comparatively poor performance as the fall is very gradual and 

it takes a long time to settle, though with no oscillations. All the three controllers reach the steady 

state value with no oscillations, and so settling time is not considered here.  

 

Figure 9: Step responses of controllers – Φ 
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Table 9 gives a quantitative comparison between the parameters mentioned above, which clearly 

shows the superior performance of LQR.   

Φ(t) FBL + PD PID LQR 

Fall time (s) 1.076 2.792 0.059 

Undershoot (m) % 5.851 14.368 0.556 

Table 9: Characteristic parameters to a step input for Φ 

 

Consider the step response for θ, where LQR again shows the better performance. The 

combination of FBL and PD controller has almost similar fall time, but shows some undershoot. 

The PID controller shows a large undershoot and some oscillations leading to a poor response. 

Based on settling time, both LQR and FBL+PD combination show similar performance but PID 

lags far behind.  

 

Figure 10: Step responses of controllers – θ 

 

Table 10 gives a clearer picture about the θ response of the three controllers for a step input.  

θ(t) FBL + PD PID LQR 

Fall time (s) 1.076 3.612 0.074 

Undershoot (m) % 5.851 30.921 0.505 

Table 10: Characteristic parameters to a step input for θ 
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Figure 11 shows the step response for Ψ for the three controllers. Here, the combination of FBL 

and PD controller show the best performance with very small undershoot and a decent fall time. 

LQR shows the least fall time, but has a large undershoot and rapidly varying response before 

settling. PID also shows a very undershoot and the slowest response among the three controllers.  

 

Figure 11: Step responses of controllers – Ψ 

 

Table 11 contains the values of the characteristic parameters used for comparison, and clearly 

shows that the combination of FBL and PD controller has the best performance.  

Ψ(t) FBL + PD PID LQR 

Fall time (s) 1.561 2.32 0.053 

Undershoot (m) % 1.531 19.88 15.698 

Table 11: Characteristic parameters to a step input for Ψ 

 

For Z control, since a positive step was given as input the comparison is made on the basis of rise 

time and percentage of overshoot. Figure 12 shows the response of the three controllers, from 

which it is evident that the combination of FBL and PD controller has the best performance. It 

shows the least overshoot and remains steady before the step input is given. The PID controller 

has a faster rise, but higher overshoot due to the step input and a deviation before the step is 

provided. LQR shows a very poor performance in this case, as it saturates below the desired height. 

It also shows deviations before the step is given.  
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Figure 12: Step responses of controllers –Z 

 

From table 12, it is clear that the combination of FBL and PD controller has the best performance.  

Z(t) FBL + PD PID LQR 

Rise time (s) 1.07 0.788 0.33 

Overshoot (m) % 5.851 21.341 58.871 

Table 12: Characteristic parameters to a step input for Z 

 

Finally, a comparison can also be made based on the computational time. All the 3 controllers 

were simulated for 50s in Matlab. As seen in the table below, the computational time is least for 

the combination of FBL and PD controller.  

Controller Simulation time (sec) 

FBL + PD 2.98 

PID  4.08 

LQR 5.10 

Table 13: Computational time of controllers 

From the comparative study presented above, it is very evident that the combination of Feedback 

Linearization and PD controller shows the best performance. Hence, a trajectory controller is 

integrated with this to achieve the desired trajectory tracking.  
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5.2 Trajectory planner 
 

5.2.1 Selecting the most feasible landing point 
 

 

Figure 13: Image containing different shapes in different colors 

 

The input image consists of various shapes in various colors. The final image consists of only the 

black circles. The centroids of these circles are the feasible landing points. 

 

 

Figure 14: Black circle given as output 
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5.2.2 Trajectory Planning algorithm 
 

 

Figure 15 : Maze input to the trajectory planner 

 

The input maze consists of walls which are no fly zones shown in Figure 15. The Figure 16 

shows the path generated by the trajectory planner.  

 

Figure 16 : Path generated by the trajectory planner 
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5.3 Trajectory tracking 
 

5.3.1 Trajectory tracking – Most feasible landing point 
 

A comparison can be made between the desired trajectory and the actual trajectory using Figure 

17. It can be inferred that the quadcopter is able to follow the trajectory with reasonable accuracy 

throughout. At the point of switching, the inertia of the quadcopter prevents it from making a sharp 

change in the trajectory. So it consumes some time before again following the desired trajectory. 

When it approaches the end point, the change in input from ramp to step occurs, but the quadcopter 

due to its inertia oscillates about that point before finally resting there. The final location of the 

quadcopter is exactly in the specified landing point, which can be concluded from Figure 18 where 

X and Y comparisons are plotted.  

 

 

Figure 17:  Actual path followed 
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Figure 18: Coordinate wise comparison of desired and actual paths 

 

The plots of attitude variables vs time for the above simulation is given in Figure 19. There are 

three regions of interest – the starting point when a path command is given, during switching and 

finally after reaching the landing point. The attitude variables show changes only in these three 

regions.  

 

Figure 19: Plots of attitude variables vs Time 
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5.3.2. Trajectory tracking – traversing the maze 
 

In this simulation, the quadcopter is traversing a complex maze. The path planning is done based 

on the image of surroundings. The image is processed to identify obstacles and safe flying zones. 

The Dijkstra’s algorithm is employed to determine the shortest path from the starting point to 

destination. Then, trajectory tracking is used to closely follow this path. 

The shortest path from the left top corner of the image to the right bottom corner of the image is 

generated using Dijkstra’s Algorithm. The path is efficient and is devoid of any obstacles. This 

path can be seen in Figure 20.   

 

 

Figure 20: Desired path generated by trajectory planner 

 

This trajectory is fed in the form of a time series data to the controller. The trajectory is followed 

with reasonable accuracy. It is visible in Figure 21 that all the sharp turns in the desired trajectory 

are transformed to smooth curves in the actual path due to the inertia of the quadcopter. 
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Figure 21: Actual path followed by quadcopter 

 

The trajectory controller is successful in guiding the quadcopter to traverse such a complex path, 

which is clearly seen in Figure 22 through a coordinate wise comparison. Although there is a slight 

lag between the desired and actual paths due to the slow response of the trajectory controller, it 

finally ceases at the end when the destination is reached.  

 

Figure 22: Coordinate wise comparison of desired path and actual path 
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The attitude plots, especially the roll and pitch angles show changes throughout the course of the 

quadcopter motion because of the complexity in path. Theta and x are correlated whereas Phi and 

y are correlated.  Z settles at 3m soon after the start of the simulation. 

 

Figure 23: Plots of Attitude variables vs Time 
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Further work 
 

Miniature Unmanned Aerial Vehicles (UAVs) with ability to vertically take-off and land (as in 

quadrotors) exhibit advantages and features in maneuverability that has recently gained strong 

interest in the research community. All the simulations were carried out ensuring that the 

quadcopters entire motion occurs at sufficient height above the ground, and take-off and landing 

are not performed by the quadcopter. The phenomenon of ground effect has also not been 

considered at low altitudes. Incorporating the ability to perform vertical take-off and landing 

overcoming ground effects is a key issue which will be addressed in the future.  

Reliability of control systems require robustness and fault tolerance capabilities in presence of 

anomalies and unexpected failures in actuators, sensors or subsystems. Designing a controller that 

can combat the failure of one or more rotors is a further step in this project. Based on the inputs 

from the FDI module, the quadcopter must be equipped to switch to the failsafe controller on the 

onset of failure. Implementing an adaptive control strategy of this kind is another key issue to be 

addressed.  
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Appendix 
 

Appendix A1: Quadcopter plant  
  

function quadplant(block) 
setup(block); 

  
function setup(block) 

  
  block.NumInputPorts  = 4 ; 

  
  block.NumOutputPorts = 12; 

   
  for i = 1:4; % These are the motor inputs 
  block.InputPort(i).Dimensions        = 1; 
  block.InputPort(i).DirectFeedthrough = false; 
  block.InputPort(i).SamplingMode      = 'Sample'; 
  end 

  
  for i = 1:12; 
  block.OutputPort(i).Dimensions       = 1; 
  block.OutputPort(i).SamplingMode     = 'Sample'; 
  end 

  
  % Register the parameters. 
  block.NumDialogPrms     = 0; %fromtemplate 

   
  % Set up the continuous states. 
 block.NumContStates = 12; %notintemplate 

  
  block.SampleTimes = [0 0]; 

   
  block.SetAccelRunOnTLC(false);   

  
  block.SimStateCompliance = 'DefaultSimState'; 

   
  block.RegBlockMethod('InitializeConditions', @InitializeConditions); 

   
  block.RegBlockMethod('Outputs', @Outputs); 

  
  block.RegBlockMethod('Derivatives', @Derivatives); 
  block.RegBlockMethod('Terminate', @Terminate); % Required 

  

  
function InitializeConditions(block) 

  
% P, Q, R are in rad/s 
P=0; Q=0; R=0; 

  
% Phi, The, Psi are in rads 
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Phi=10*pi/180; The=12*pi/180; Psi=10*pi/180; 

  
U=0; V=0; W=0; 
X=0; Y=0; Z=2; 

  
init = [P,Q,R,Phi,The,Psi,U,V,W,X,Y,Z]; 

  
for i=1:12 
block.OutputPort(i).Data = init(i); 
block.ContStates.Data(i) = init(i); 
end 

  
function Outputs(block) 
for i = 1:12; 
  block.OutputPort(i).Data = block.ContStates.Data(i); 
end 

  
function Derivatives(block) 

  
% P Q R in units of rad/sec 
P = block.ContStates.Data(1); 
Q = block.ContStates.Data(2); 
R = block.ContStates.Data(3); 
% Phi The Psi in radians 
Phi = block.ContStates.Data(4); 
The = block.ContStates.Data(5); 
Psi = block.ContStates.Data(6); 
% U V W in units of m/s 
U = block.ContStates.Data(7); 
V = block.ContStates.Data(8); 
W = block.ContStates.Data(9); 
% X Y Z in units of m 
X = block.ContStates.Data(10); 
Y = block.ContStates.Data(11); 
Z = block.ContStates.Data(12); 
% w values in rev/min! NOT radians/s!!!! 
w1 = block.InputPort(1).Data; 
w2 = block.InputPort(2).Data; 
w3 = block.InputPort(3).Data; 
w4 = block.InputPort(4).Data;  
w  = [w1; w2; w3; w4]; 

  
% CALCULATE MOMENT AND THRUST FORCES 

  
%find k,d,l 
k=2.98e-06; d=.0382; l=0.225; 

  
%find m,Ixx,Iyy,Izz,Ir 
m=0.468; Ixx=4.856e-03;Iyy=4.856e-03;Izz=8.801e-03;Ir=3.357e-05; 
Ax=.3; Ay=0.3; Az=0.25; Ar=0.2; 
T1= k*w1^2; 
T2= k*w2^2; 
T3= k*w3^2; 
T4= k*w4^2; 
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T = T1+T2+T3+T4; %total thrust 
Mphi= l*(T4-T2); %torques 
Mthe= l*(T3-T1); 
Mpsi= d*(-T1+T2-T3+T4); 

  
Omega=w1-w2+w3-w4; 

  
dP= ((Iyy-Izz)/Ixx)*Q*R - Ir/Ixx * Q*Omega + Mphi/Ixx - Ar/Ixx*P; 
dQ= ((Izz-Ixx)/Iyy)*P*R + Ir/Iyy * P*Omega + Mthe/Iyy - Ar/Iyy*Q; 
dR= ((Ixx-Iyy)/Izz)*P*Q + Mpsi/Izz -Ar/Izz*R; 

  
dPhi= P+ sin(Phi)*tan(The)*Q + cos(Phi)*tan(The)*R; 
dTheta= cos(Phi)*Q - sin(Phi)*R; 
dPsi= sin(Phi)/cos(The)*Q + cos(Phi)/cos(The)*R; 

  
dU= ( sin(Phi)*sin(Psi) + cos(Phi)*sin(The)*cos(Psi) )*T/m - Ax/m*U; 
dV= ( -sin(Phi)*cos(Psi) + cos(Phi)*sin(The)*sin(Psi) )*T/m - Ay/m*V; 
dW= -9.8 + cos(Phi)*cos(The)*T/m - Az/m*W; 

  
vb = [U;V;W]; 

  
dX = U; 
dY = V; 
dZ = W; 

    
f = [dP dQ dR dPhi dTheta dPsi dU dV dW dX dY dZ].'; 

  
  %This is the state derivative vector 
block.Derivatives.Data = f; 

  
function Terminate(block) 

  
%endfunction 
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Appendix A2: Quadcopter plant with a failed rotor 

 
 function quadplant2(block) 
setup(block); 

  
function setup(block) 

  
  block.NumInputPorts  = 3; 

  
  block.NumOutputPorts = 12; 

   

   
  for i = 1:3; % These are the motor inputs 
  block.InputPort(i).Dimensions        = 1; 
  block.InputPort(i).DirectFeedthrough = false; 
  block.InputPort(i).SamplingMode      = 'Sample'; 
  end 

  
  for i = 1:12; 
  block.OutputPort(i).Dimensions       = 1; 
  block.OutputPort(i).SamplingMode     = 'Sample'; 
  end 

  
  % Register the parameters. 
  block.NumDialogPrms     = 0; %fromtemplate 

   
  % Set up the continuous states. 
 block.NumContStates = 12; %notintemplate 

  
  block.SampleTimes = [0 0]; 

   
  block.SetAccelRunOnTLC(false);   

  
  block.SimStateCompliance = 'DefaultSimState'; 

   
  block.RegBlockMethod('InitializeConditions', @InitializeConditions); 

   
  block.RegBlockMethod('Outputs', @Outputs); 

  
  block.RegBlockMethod('Derivatives', @Derivatives); 
  block.RegBlockMethod('Terminate', @Terminate); % Required 

  

  
function InitializeConditions(block) 
% P, Q, R are in rad/s 
P=0; Q=0; R=0; 

  
% Phi, The, Psi are in rads 
Phi=10*pi/180; The=12*pi/180; Psi=10*pi/180; 

  
U=0; V=0; W=0; 
X=0; Y=0; Z=2; 
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init = [P,Q,R,Phi,The,Psi,U,V,W,X,Y,Z]; 

  
for i=1:12 
block.OutputPort(i).Data = init(i); 
block.ContStates.Data(i) = init(i); 
end 

  
function Outputs(block) 
for i = 1:12; 
  block.OutputPort(i).Data = block.ContStates.Data(i); 
end 

  
function Derivatives(block) 

  
% P Q R in units of rad/sec 
P = block.ContStates.Data(1); 
Q = block.ContStates.Data(2); 
R = block.ContStates.Data(3); 
% Phi The Psi in radians 
Phi = block.ContStates.Data(4); 
The = block.ContStates.Data(5); 
Psi = block.ContStates.Data(6); 
% U V W in units of m/s 
U = block.ContStates.Data(7); 
V = block.ContStates.Data(8); 
W = block.ContStates.Data(9); 
% X Y Z in units of m 
X = block.ContStates.Data(10); 
Y = block.ContStates.Data(11); 
Z = block.ContStates.Data(12); 
% w values in rev/min! NOT radians/s!!!! 
w1 = block.InputPort(1).Data; 
w3 = block.InputPort(2).Data; 
w4 = block.InputPort(3).Data; 
w  = [w1; w3; w4]; 

  
%find k,d,l 
k=2.98e-06; d=.03825; l=0.225; 

  
%find m,Ixx,Iyy,Izz,Ir 
m=0.468; Ixx=4.856e-03;Iyy=4.856e-03;Izz=8.801e-03;Ir=3.357e-05; 
Ax=.3; Ay=0.3; Az=0.25; Ar=0.1; 

  
T1= k*w1^2; 
%T2= k*w2^2; 
T3= k*w3^2; 
T4= k*w4^2; 

  
Fmat= [ 1 1 1; -l l 0; -d -d d;]; 
Fmat1=inv(Fmat); 

  
mat1= [T1;T3;T4]; 
mat2= Fmat*mat1; 
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T = mat2(1); %total thrust  
Mthe= mat2(2);%torques 
Mpsi= mat2(3); 

  
%Mphi is not used as control input but appears later in eq 
%Substitute for Mphi 
Mphi= 0.5*l*(T-Mpsi/d); 
Omega=w1+w3-w4; %or opp signs check.  

  
dP= ((Iyy-Izz)/Ixx)*Q*R - Ir/Ixx * Q*Omega + Mphi/Ixx - Ar/Ixx*P; 
dQ= ((Izz-Ixx)/Iyy)*P*R + Ir/Iyy * P*Omega + Mthe/Iyy - Ar/Iyy*Q; 
dR= ((Ixx-Iyy)/Izz)*P*Q + Mpsi/Izz -Ar/Izz*R; 

  
dPhi= P+ sin(Phi)*tan(The)*Q + cos(Phi)*tan(The)*R; 
dTheta= cos(Phi)*Q - sin(Phi)*R; 
dPsi= sin(Phi)/cos(The)*Q + cos(Phi)/cos(The)*R; 

  
dX = U; 
dY = V; 
dZ = W; 

  
dU= ( sin(Phi)*sin(Psi) + cos(Phi)*sin(The)*cos(Psi) )*T/m - Ax/m*U; 
dV= ( -sin(Phi)*cos(Psi) + cos(Phi)*sin(The)*sin(Psi) )*T/m - Ay/m*V; 
dW= -9.8 + cos(Phi)*cos(The)*T/m - Az/m*W; 

  

  
vb = [U;V;W]; 
Rib = [cos(Psi)*cos(The) cos(Psi)*sin(The)*sin(Phi)-sin(Psi)*cos(Phi) 

cos(Psi)*sin(The)*cos(Phi)+sin(Psi)*sin(Phi); 
       sin(Psi)*cos(The) sin(Psi)*sin(The)*sin(Phi)+cos(Psi)*cos(Phi) 

sin(Psi)*sin(The)*cos(Phi)-cos(Psi)*sin(Phi); 
       -sin(The)         cos(The)*sin(Phi)                            

cos(The)*cos(Phi)]; 
% i_dp = Rib*vb; 
%dX = i_dp(1); 
%dY = i_dp(2); 
%dZ = i_dp(3); 
f = [dP dQ dR dPhi dTheta dPsi dU dV dW dX dY dZ].'; 

  
  %This is the state derivative vector 
block.Derivatives.Data = f; 

  
function Terminate(block) 

  
%endfunction 
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Appendix A3: Layout for PID controller 
 

 

 

Appendix A4: Layout for FBL+PD controller 
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Appendix A5: Inside FBL blocks  
 

Inside Create V block 

 

 

Matrices used for Feedback linearization 

 
function B = MatW(phi,the) 
B=[ 1 0 0 0; 0 1 sin(phi)*tan(the) cos(phi)*tan(the); 0 0 cos(phi) -sin(phi); 

0 0 sin(phi)/cos(the) cos(phi)/cos(the)]; 
end 

 

function B = MatD(phi,the) 
m=0.468; Ixx=4.856e-03;Iyy=4.856e-03;Izz=8.801e-03; 
B=[ 1/m*cos(phi)*cos(the) 0 0 0; 0 1/Ixx 0 0; 0 0 1/Iyy 0; 0 0 0 1/Izz]; 
end 

 

function B = MatC(P,Q,R,Omega,W) 
m=0.468; Ixx=4.856e-03;Iyy=4.856e-03;Izz=8.801e-03;Ir=3.357e-05;Ar=0.2; 

Az=.25; 
B=[-9.8 - Az/m*W; (Iyy-Izz)/Ixx*Q*R - Ir/Ixx*Q*Omega - Ar/Ixx*P; (Izz-

Ixx)/Iyy*P*R + Ir/Iyy*P*Omega - Ar/Iyy*Q; (Ixx-Iyy)/Izz*P*Q - Ar/Izz*R ]; 
end 

 

function B = MatA(W,Wdot,C,Q); 
B = W*C+Wdot*Q; 
end 
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Appendix A6: Layout of LQR 

 

  

 

Appendix A7: Linriz.m function 
 

A=[0 0 0 0 1 0 0 0;0 0 0 0 0 1 0 0;0 0 0 0 0 0 1 0;0 0 0 0 0 0 0 1;0 0 0 0 -

.5341 0 0 0;0 0 0 0 0 -41.186 0 0;0 0 0 0 0 0 -41.186 0;0 0 0 0 0 0 0 

22.725]; 
B=[0 0 0 0;0 0 0 0;0 0 0 0;0 0 0 0;2.137 0 0 0;0 205.93 0 0;0 0 205.93 0;0 0 

0 29788.5]; 
C=[1 0 0 0 0 0 0 0;0 1 0 0 0 0 0 0;0 0 1 0 0 0 0 0;0 0 0 1 0 0 0 0]; 
D=zeros(4); 
sys_ss = ss(A,B,C,D); 
co = ctrb(sys_ss); 
controllability = rank(co); 
Q = C'*C; 
R=eye(4); 
K = lqr(A,B,Q,R); 

  
%Increasing the weights to improve performance 
Q(1,1)=100; 
Q(2,2)=100; 
Q(3,3)=100; 
Q(4,4)=100; 

  
K = lqr(A,B,Q,R); 
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Appendix A8: Inside image processing block 
 

 

Inside the image block 
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Appendix A9: Pathgen.m function  
 

function y= pathgen(L,m,v_x,v_y,x,y) 
omega=1000; 
F=4*2.98*10^(-6)*omega^2; 
theta=pi/4; 
% m=0.468; 
a=F*sin(theta)/m; 
% v_x=10; 
% v_y=10; 
s=sqrt(v_x^2+v_y^2); 
% x=150; 
% y=150; 

  
k=1; 
rows=size(L); 
while k<=rows(1,1) 
    theta1=atan2(L(k,2)-y,L(k,1)-x); 
    theta2=atan2(v_y,v_x); 
    theta=theta1-theta2; 
     v_a=abs(s*cos(theta)); 
     v_p=abs(s*sin(theta)); 
 

d=sqrt((x-L(k,1))^2 + (y-L(k,2))^2);  

  
if theta == 0 || s ==0 
    t(k)=(1/a)*(sqrt(v_a^2+2*a*d)-v_a); 

  
elseif theta == pi || theta == -pi 
    t(k)=(1/a)*(sqrt(v_a^2+2*a*d)+v_a); 

  

     
else 
syms u v 
[solv, solu] = solve(u^2 + v^2 == a^2, (-2*v_a*v_p)/u + (2*v_p^2*v)/(u^2) == 

d); 

  
p=1; 

  
while p<=length(solv) 
if isreal(solv(p))==1 
 if (L(k,1)-x)*solv(p)>=0 
    a_x=solu(p); 
    a_y=solv(p);  
 end 
end 
p=p+1; 
end 

  
t(k)=abs(-2*v_p/a_y); 
end 
k=k+1; 
end 
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min = t(1);r=1; 
l=2; 
while l<=length(t) 
    if t(l)<=min 
        min=t(l); 
        r=l; 
    end 
    l=l+1; 
end 
y=L(r,:); 

  

  

Appendix A10: Circle2.m function 
  
function y= circle2(RGB) 
% imshow(RGB); 

  
I= rgb2gray(RGB); 
% bw = imbinarize(I); 
bw=im2bw(I,0.3); 

  
 bw2 = bwmorph(~bw, 'dilate',2); 
 bw = bwareaopen(bw2,500); 
 se = strel('disk',2); 
bw = imclose(bw,se); 
bw = imfill(bw,'holes'); 

  
[B,L] = bwboundaries(bw,'noholes'); 

  

  

  
% Display the label matrix and draw each boundary 
imshow(label2rgb(L, @jet, [.5 .5 .5])) 
hold on 
for k = 1:length(B) 
  boundary = B{k}; 
  plot(boundary(:,2), boundary(:,1), 'w', 'LineWidth', 2) 
end 

  
stats = regionprops(L,'Area','Centroid'); 
threshold = 0.99; 
centroid=zeros(length(B),2); 

  

  
% loop over the boundaries 
i=1; 
for k = 1:length(B) 

  
  % obtain (X,Y) boundary coordinates corresponding to label 'k' 
  boundary = B{k}; 
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  % compute a simple estimate of the object's perimeter 
  delta_sq = diff(boundary).^2; 
  perimeter = sum(sqrt(sum(delta_sq,2))); 

  
  % obtain the area calculation corresponding to label 'k' 
  area = uint32(stats(k).Area); 

   

  
  % compute the roundness metric 
  metric =(4*pi*area)/perimeter^2; 

  
  % display the results 
  metric_string = sprintf('%2.2f',metric); 

  
  % mark objects above the threshold with a black circle 
  if metric > threshold 
    centroid(i,:)=stats(k).Centroid; 
     plot(centroid(1),centroid(2),'ko'); 

     

     
  end 
  i=i+1; 

  
  text(boundary(1,2)-35,boundary(1,1)+13,metric_string,'Color','y',... 
       'FontSize',14,'FontWeight','bold'); 

  
end 
% disp(centroid); 
p=1; 
q=0; 
while p<=length(B) 

     
    if centroid(p,1)~=0 

         
        q=q+1; 
    end 
    p=p+1; 

         
end 
x=zeros(q,2); 
p=1; 
q=1; 
while p<=length(B) 

     
    if centroid(p,1)~=0 
        x(q,:)=centroid(p,:); 
        q=q+1; 
    end 
    p=p+1; 

         
end 
y=x; 
% title(['Metrics closer to 1 indicate that ',... 
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%        'the object is approximately round']); 
%   imshow(bw); 

     

 

Appendix A11: dijkstra.m function 
 

%--------------------------------------------------- 
% Dijkstra Algorithm 
% author : Dimas Aryo 
% email : mr.dimasaryo@gmail.com 
% 
% usage 
% [cost rute] = dijkstra(Graph, source, destination) 
%  
% example 
% G = [0 3 9 0 0 0 0; 
%      0 0 0 7 1 0 0; 
%      0 2 0 7 0 0 0; 
%      0 0 0 0 0 2 8; 
%      0 0 4 5 0 9 0; 
%      0 0 0 0 0 0 4; 
%      0 0 0 0 0 0 0; 
%      ]; 
% [e L] = dijkstra(G,1,7) 
%--------------------------------------------------- 
function [e L] = dijkstra(A,s,d) 

  
if s==d 
    e=0; 
    L=[s]; 
else 

  
A = setupgraph(A,inf,1); 

  
if d==1 
    d=s; 
end 
A=exchangenode(A,1,s); 

  
lengthA=size(A,1); 
W=zeros(lengthA); 
for i=2 : lengthA 
    W(1,i)=i; 
    W(2,i)=A(1,i); 
end 

  
for i=1 : lengthA 
    D(i,1)=A(1,i); 
    D(i,2)=i; 
end 

  
D2=D(2:length(D),:); 
L=2; 
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while L<=(size(W,1)-1) 
    L=L+1; 
    D2=sortrows(D2,1); 
    k=D2(1,2); 
    W(L,1)=k; 
    D2(1,:)=[]; 
    for i=1 : size(D2,1) 
        if D(D2(i,2),1)>(D(k,1)+A(k,D2(i,2))) 
            D(D2(i,2),1) = D(k,1)+A(k,D2(i,2)); 
            D2(i,1) = D(D2(i,2),1); 
        end 
    end 

     
    for i=2 : length(A) 
        W(L,i)=D(i,1); 
    end 
end 
if d==s 
    L=[1]; 
else 
    L=[d]; 
end 
e=W(size(W,1),d); 
L = listdijkstra(L,W,s,d); 
end 

 

Appendix A12: Functions called by Dijkstra.m  
 

(save as separate files) 

 

function L = listdijkstra(L,W,s,d) 

  
index=size(W,1); 
while index>0 
    if W(2,d)==W(size(W,1),d) 
        L=[L s]; 
        index=0; 
    else 
        index2=size(W,1); 
        while index2>0 
            if W(index2,d)<W(index2-1,d) 
                if W(index2,1)==s  
                    L = [L 1];  
                else  
                    L=[L W(index2,1)];  
                end 
                L=listdijkstra(L,W,s,W(index2,1)); 
                index2=0; 
            else 
                index2=index2-1; 
            end 
            index=0; 
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        end 
    end 
end 

 

function G = exchangenode(G,a,b) 

  
%Exchange element at column a with element at column b; 
buffer=G(:,a); 
G(:,a)=G(:,b); 
G(:,b)=buffer; 

  
%Exchange element at row a with element at row b; 
buffer=G(a,:); 
G(a,:)=G(b,:); 
G(b,:)=buffer; 

 

function G = setupgraph(G,b,s) 

  
if s==1 
    for i=1 : size(G,1) 
        for j=1 :size(G,1) 
            if G(i,j)==0 
                G(i,j)=b; 
            end 
        end 
    end 
end 
if s==2 
    for i=1 : size(G,1) 
        for j=1 : size(G,1) 
            if G(i,j)==b 
                G(i,j)=0; 
            end 
        end 
    end 
end 

 

 

Appendix A13: pathcr.m function 
 

% function d_path = pathcr(m) 
m=imread('path5.png'); 

  
n=rgb2gray(m); 
a=im2bw(n); 
p=ones(50,50); 
for i=1:1:50 
for j=1:1:50 
if a(i,j)==0 
    p(i,j)=5; 
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else 
    p(i,j)=1; 
end 
end 
end 
%for l=1:1:100 
for i=1:1:50 
for j=1:1:50 

     
    if p(i,j)~=5 

  
if i==1 && j==1 
        p(i,j)=(p(i,j+1)+p(i+1,j))/2; 
elseif i==1 && j==50 
        p(i,j)=(p(i,j-1)+p(i+1,j))/2; 
    elseif i==50 && j==50  
        p(i,j)=(p(i,j-1)+p(i-1,j))/2; 
    elseif i==50 && j==1 
        p(i,j)=(p(i,j+1)+p(i-1,j))/2; 
    elseif i==1 && j~=50 && j~=1 
        p(i,j)=(p(i,j-1)+p(i+1,j)+p(i,j+1))/3; 
    elseif i==50 && j~=50 && j~=1 
        p(i,j)=(p(i,j-1)+p(i-1,j)+p(i,j+1))/3; 
elseif j==1 && i~=50 && i~=1 
        p(i,j)=(p(i-1,j)+p(i,j+1)+p(i+1,j))/3; 
elseif j==50 && i~=50 && i~=1 
        p(i,j)=(p(i-1,j)+p(i,j-1)+p(i+1,j))/3; 
    else 
        p(i,j)=(p(i-1,j)+p(i,j-1)+p(i+1,j)+p(i,j+1))/4; 
end 
    end 

  
end 
end 
%end 
q=1; 
k=1; 
n=zeros(50,50); 
for i=1:1:50 
    for j=1:1:50 
        n(i,j)=q; 
        q=q+1; 
    end 
end 
A=zeros(2500,2500); 
for i=1:1:50 
    for j=1:1:50 

      
            if i==1 && j==1 
       if p(i,j+1)~=5  
           A(n(i,j),n(i,j+1))=p(i,j+1); end  
       if p(i+1,j)~=5  
           A(n(i,j),n(i+1,j))=p(i+1,j); end  
       if p(i+1,j+1)~=5 
           A(n(i,j),n(i+1,j+1))=p(i+1,j+1); end 
            elseif i==1 && j==50 
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       if p(i,j-1)~=5  
           A(n(i,j),n(i,j-1))=p(i,j-1); end  
       if p(i+1,j)~=5 
           A(n(i,j),n(i+1,j))=p(i+1,j); end  
       if p(i+1,j-1)~=5 
           A(n(i,j),n(i+1,j-1))=p(i+1,j-1); end 
            elseif i==50 && j==50 
       if p(i,j-1)~=5  
           A(n(i,j),n(i,j-1))=p(i,j-1); end  
       if p(i-1,j)~=5  
           A(n(i,j),n(i-1,j))=p(i-1,j); end  
       if p(i-1,j-1)~=5  
           A(n(i,j),n(i-1,j-1))=p(i-1,j-1); end 
            elseif i==50 && j==1 
       if p(i,j+1)~=5  
           A(n(i,j),n(i,j+1))=p(i,j+1); end  
       if p(i-1,j)~=5  
           A(n(i,j),n(i-1,j))=p(i-1,j); end  
       if p(i-1,j+1)~=5  
           A(n(i,j),n(i-1,j+1))=p(i-1,j+1); end 
            elseif i==1 && j~=50 && j~=1 
       if p(i,j+1)~=5  
           A(n(i,j),n(i,j+1))=p(i,j+1); end  
       if p(i+1,j)~=5  
           A(n(i,j),n(i+1,j))=p(i+1,j); end  
       if p(i,j-1)~=5  
           A(n(i,j),n(i,j-1))=p(i,j-1); end  
       if p(i+1,j-1)~=5 
           A(n(i,j),n(i+1,j-1))=p(i+1,j-1); end  
       if p(i+1,j+1)~=5 
           A(n(i,j),n(i+1,j+1))=p(i+1,j+1); end 
            elseif i==50 && j~=50 && j~=1 
       if p(i,j+1)~=5 
           A(n(i,j),n(i,j+1))=p(i,j+1); end  
       if p(i-1,j)~=5 
           A(n(i,j),n(i-1,j))=p(i-1,j); end  
       if p(i,j-1)~=5 
           A(n(i,j),n(i,j-1))=p(i,j-1); end  
       if p(i-1,j-1)~=5 
           A(n(i,j),n(i-1,j-1))=p(i-1,j-1); end  
       if p(i-1,j+1)~=5 
           A(n(i,j),n(i-1,j+1))=p(i-1,j+1); end 
            elseif j==1 && i~=50 && i~=1 
       if p(i+1,j)~=5 
           A(n(i,j),n(i+1,j))=p(i+1,j); end  
       if p(i,j+1)~=5 
           A(n(i,j),n(i,j+1))=p(i,j+1); end  
       if p(i-1,j)~=5 
           A(n(i,j),n(i-1,j))=p(i-1,j); end  
       if p(i-1,j+1)~=5 
           A(n(i,j),n(i-1,j+1))=p(i-1,j+1); end  
       if p(i+1,j+1)~=5 
           A(n(i,j),n(i+1,j+1))=p(i+1,j+1); end 
            elseif j==50 && i~=50 && i~=1 
       if p(i+1,j)~=5 
           A(n(i,j),n(i+1,j))=p(i+1,j); end  
       if p(i,j-1)~=5 
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           A(n(i,j),n(i,j-1))=p(i,j-1); end  
       if p(i-1,j)~=5 
           A(n(i,j),n(i-1,j))=p(i-1,j); end  
       if p(i-1,j-1)~=5 
           A(n(i,j),n(i-1,j-1))=p(i-1,j-1); end  
       if p(i+1,j-1)~=5 
           A(n(i,j),n(i+1,j-1))=p(i+1,j-1); end 
            else 
       if p(i,j+1)~=5 
           A(n(i,j),n(i,j+1))=p(i,j+1); end  
       if p(i+1,j)~=5 
           A(n(i,j),n(i+1,j))=p(i+1,j); end  
       if p(i,j-1)~=5 
           A(n(i,j),n(i,j-1))=p(i,j-1); end  
       if p(i+1,j-1)~=5 
           A(n(i,j),n(i+1,j-1))=p(i+1,j-1); end 
        if p(i+1,j+1)~=5 
           A(n(i,j),n(i+1,j+1))=p(i+1,j+1); end  
        if p(i-1,j)~=5 
           A(n(i,j),n(i-1,j))=p(i-1,j); end  
        if p(i-1,j-1)~=5 
           A(n(i,j),n(i-1,j-1))=p(i-1,j-1); end  
        if p(i-1,j+1)~=5  
           A(n(i,j),n(i-1,j+1))=p(i-1,j+1); end 
            end 
    end 
end 
[cost, t_route] = dijkstra(A,1,2500); 
j=ones(50,50); 
l=length(t_route); 
x=zeros(1,l); 
y=zeros(1,l); 
for i=1:1:l  
    j(t_route(i))=0;  
    x(i)=mod(t_route(i),50); 
    if x(i)==0 
        x(i)=50; 
    end 
    y(i)=ceil(t_route(i)/50); 
end 
x=fliplr(x); 
y=fliplr(y); 
for i=1:1:10 
    x(l+i)=x(l); 
    y(l+i)=y(l); 
end 

  
w=m; 
for i=1:1:l+10 
    m(y(i),x(i))=0; 
end 
p=0; 
tim=zeros(1,l+10); 
for i=2:1:l+10 
    key_x=0; 
    key_y=0; 
    if x(i)-x(i-1)==1 
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        key_x=1; 
    end 
    if y(i)-y(i-1)==1 
        key_y=1; 
    end 
        if key_x==1&&key_y==1 
            p=p+sqrt(2); 
        else 
            p=p+1; 
        end 
        tim(i)=p; 
end 
  time = 150*tim/tim(l+10) ;      
 imshow(m); 
    ts_x = timeseries(x,time); 
    ts_y = timeseries(y,time); 
    path = struct('x',ts_x,'y',ts_y); 
    d_path=path; 
% save('x_time.mat',path); 

  

     

         

Appendix A14: Trajectory controller 
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Appendix A15: Complete layout for trajectory control simulation 1 
 

 

 

Appendix A16: Complete layout for trajectory control simulation 2 
 

 

 

 


