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Abstract

quadcopter UAVs are being heavily deployed in autonomy tasks due to its small size
and high maneuverability, thereby enabling them to execute complex trajectories
efficiently. However in the context of long range autonomy, these robots are limited
in terms of performance due to their battery constraints. This brings forth the
need to generate efficient planners that can enable the quadcopter to operate in a
real environment for extended periods with maximum productivity. Through this
project, we aim to develop an agent that has learned to navigate to a goal using an
energy efficient control policy. The agent is trained in a reinforcement learning
setting using the Deep Deterministic Policy Gradient algorithm. We evaluate our
algorithm in a simulated environment and show that it performs better than classical
control strategies.

1 Introduction

Quadcopters have become increasingly popular in recent times for research and consumer
applications. They unlock the ability to traverse large expanses of space with few obstacles impeding
its path. One major drawback of these systems is the small battery system that they can carry. Hence
it is important to develop strategies that allow quadcopters to maximize the area that they can cover
given the battery constraint.

In this project, we attempt to enable a quadcopter agent to learn to navigate to a goal loca-
tion using energy efficient control policies. This will result in lower battery consumption which in
turn will improve the long range navigation capabilities of quadcopters. This has another effect of
allowing quadcopters to increase the payload that they carry for the same distance traveled. This is
invaluable in the real-world to autonomous drone delivery systems such as Amazon Prime Air.

2 Related Works

Deep Reinforcement Learning has been used to solve complicated, non-linear problems beginning
with video games in [1]. Since then there has been important work done to extend these approaches
to continuous action and state spaces which are very relevant to the field of robotics. Model-based
Reinforcement Learning methods have been successful in control of very unstable control systems
such as quadcopters as shown in [2] and [3]. David Silver et al. [4] extended policy gradient methods
to continuous action spaces which allow the use of many of the tricks used in the Deep Q-Networks
implementation in [1]. [5] successfully shows that Reinforcement Learning can be used for the
low-level control of quadcopters to solve complex maneuvers such as stabilizing after throwing the
quadcopter from a hand upside-down.



There have also been attempts to improve the energy-efficiency of quadcopters to counter the battery
constraints. The focus however has been to plan efficient paths [6] or the model of the quadcopter [7]
rather than developing low-level control policies to improve the energy-efficiency. Drawing inspiration
from both classical energy-efficient planning strategies and learning-based low-level control, we train
an end-to-end learning agent to navigate to a goal while considering battery constraints.

3 Method

3.1 Problem Formulation

The problem we are trying to solve requires a quadcopter with a battery constraint to navigate to a
goal state by learning an appropriate low level control policy. For the low level control problem, we
are only considering position control for simplicity purpose and hence our input state includes the
current state of the system. To ensure that the quadcopter is able to generalize a policy based on goal
state and battery level we include these in the state as well. Based on the current position, the current
battery level and the target position, the algorithm computes the required instantaneous velocities
for the quadcopter which is the action. Hence our problem has a continuous state space as well as a
continuous action space. The state space used by the agent is given in Eqn. 1 and the action space is
given in Eqn. 2 .

S = [x y z goal_x goal_y goal_z battery_level]T (1)

A = [Vx Vy Vz]
T (2)

Each episode is terminated if the quadcopter becomes unstable or runs out of battery, eventually
crashing into the ground.

3.2 Battery Drain Formulation

The key contribution of this project is to incorporate the battery constraints of a quadcopter. We
wanted the agent to conserve its battery usage while navigating to its goal position. The battery drain
is modeled according to Eqn. 3

∆battery = −‖V ‖1.1 , V = [1+ | vx |, 1+ | vy |, 1+ | vz |] (3)

Since the velocity of the quadcopter is usually below 1m/s, we added a +1 term to ensure that the
velocity monotonically increases with an increase in velocity. Also, when quadcopters don’t have
velocity they are still hovering which should drain the battery. The velocity in x, y and z are treated as
equal and penalized in the same fashion. The exponent was crucial because the formulation became
nonlinear. An increase in speed will cause the battery to drain faster. The agent must find a middle
ground between getting to its goal location as quickly as possible so that its goal reward will not be
heavily discounted and controlling its velocity so that it doesn’t run out of power in the middle of its
journey.

3.3 Reward Shaping

A major challenge in Reinforcement Learning, especially for Robotics applications, is coming up
with a reward function that enables the agent to learn the desired behavior. We experimented with
several reward functions to come up with the most promising reward function for the agent to learn a
stable policy. Our most naive approach was purely based on the distance and heading of the agent
to the goal. This reward function has several shortfalls one of which was that it allowed the agent
to learn a less than optimal behavior of circling around the goal to accumulate as much rewards as
possible without ever terminating. The main inspiration for our final reward function shown in Eqn. 4
was drawn from Andrew Ng, Harada and Russell (1999) [12]. They suggest that the reward function
should take the form of a potential function.
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R =


‖Xg −Xt−1‖ − ‖Xg −Xt‖ , for incremental distance from goal
−‖V ‖

1.1

100 , for battery drain
+50, for reaching the goal within a threshold of 0.5m
−5, for crashing or dying out of battery

(4)

With this reward function, we only give out a reward if the agent is making progress towards the
goal with the relative measure of it’s distance to the goal rather than absolute. Furthermore, we also
decrease the reward based on how much battery was used in the process. The battery drain was scaled
down by 100 to ensure that all rewards were of similar magnitudes. The final goal reward was given
to be 50. It was made to be significantly bigger because we want to ensure that the agent is able
to understand that its importance is higher that the positive reward at each step. If the agent was
successful in reaching the goal, a large enough reward must be used to reflect that and reinforce the
learning process. A negative reward of -5 is given if the agent becomes unstable and crashes into the
environment. We chose a moderate penalty for crashing because a big penalty makes it difficult to
learn any positive behavior at the start of training.

3.4 Implementation

For our RL problem setting, it was important to deal with continuous action space as the agent must
learn a policy along the lines of a position controller for navigation. Our main algorithm is the Deep
Deterministic Policy Gradient (DDPG) [4] as detailed in Alg. [1]. DDPG is an actor-critic algorithm
that is also model free, off-policy and utilizes some of the features presented in Deep Q-Networks
(DQN)[1]. Similar to a DQN, the DDPG employs experience replay as well as target networks during
training for better stability. With experience replay, we are able to break apart temporal correlation
during training and remove any compounded variances from bad predictions. Target networks are
a great tool for normalizing the network while training and providing stability. The weights of the
target network are made to slowly track the learned networks with the soft target parameter.

To ensure sufficient exploration during training, noise is added to the actor policy during training based
on the Ornstein-Uhlenbeck process that generates temporally correlated exploration for exploration
efficiency in physical control problems with inertia. The noise is sampled from the distribution with
σ = 0, ρ = 0.3 and decay rate = 0.6. We also added an additional exploration term that decreases
linearly from 1 at the rate 1e-5. During testing, no noise is added.

The network hyperparameters are listed in the table below. During training, the learned policy is
frozen every 50 episodes and then evaluated for 10 episodes to find the best model. The activation
function used for the output layer of the actor is tanh as the agent requires both positive and negative
velocities. The network architecture used in this project for the main task is shown in Fig. 1. The
network architecture and hyperparameters were similar for most of the tasks, any changes will be
explained in the corresponding results section.

Table 1. List of hyperparameters
Batch Size 32

Replay Buffer Size 5000
Actor Learning Rate 1e−4

Critic Learning Rate 1e−3

Target network tracking parameter, τ 0.125
Discount Factor, γ 0.98

# episodes 2500

3.5 Simulation Environment

The quadcopter is simulated using the Gazebo simulation engine, with the hector_gazebo[9] ROS
package modified to our needs. To use this simulator for reinforcement learning we developed a
custom OpenAI Gym-like environment as a wrapper to the simulation to perform all the required
functions like step, reset, sample, etc. The quadcopter state observations required for the algorithm
are obtained from the simulator, which produces the required control actions and the behavior during
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Figure 1: Actor (left) and Critic (right) network architectures

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q
(
s, a | θQ

)
and actor µ (s | θµ) with weights θQ and θµ

Initialize target network Q
′

and µ
′

with weights θQ
′

← θQ, θµ
′

← θµ

Initialize replay buffer R
for episode = 1,M do

Initialize a random process N for action exploration
Receive initial observation state s1
for t=1,T do

Select action at = µ (st | θµ) +Nt according to the current policy and exploration noise
Execute action at and observe reward rt and observe new state st+1

Store transition (st, rt, at, st+1) in R
Sample a random minibatch of N transitions (st, rt, at, st+1) from R

Set yi = ri + γQ
′
(
si+1, µ

′
(si+1 | θµ

′

) | θQ
′)

Update critic by minimizing the loss: L = 1
N

∑
i

(
yi −Q(si, ai | θQ)

)2
Update the actor policy using the sampled policy gradient:

∇θµJ ≈
1

N

∑
i

∇aQ
(
s, a | θQ

)
|s=si,a=µ(si) ∇θµµ (s | θµ) |si

Update the target networks:

θQ
′

← τθQ + (1− τ)θQ
′

θµ
′

← τθµ + (1− τ)θµ
′

end for
end for

training is rendered in Gazebo. It is important to note that there is some stochasticity in the initial
state(which causes both RL agents and classical control agents to fail) as well as in the model of the
quadcopter which we have treated as a black box since our model-free approach does not need to
consider it. We have chosen to use an empty Gazebo environment because our project focuses more
on the ability to learn control policies to decrease battery utilization rather than obstacle avoidance
which has been shown in several previous works to be an easy Reinforcement Learning problem. The
environment has also been limited to ±15m in x and y and between 0.5m to 5m in the z-direction.

4 Results

Following the methodology explained in the previous section, we successfully trained our DDPG
agent to navigate from a start state to a goal state. To quantify the results we generate several reward
plots of the agent as well as compare the battery consumption to classical control strategies. For all
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results in this section, we test the model for 10 episodes for every saved model and record the mean
reward. The best model is determined from the test curve then run for 100 test episodes to evaluate
the battery and success rate.

4.1 Single Goal Navigation

The quadcopter was first trained to navigate from a predefined start and goal position with a fixed
battery limit of 200 and the network and hyperparameter setting explained in Section 3.4. Starting
from [0, 0, 0], the quadcopter was first trained for the further Goal A at [−10, 10, 3] and then to the
nearby Goal B at [5,−10, 2]. The testing curve for Goal A for episodes 450 to 2100 is shown in Fig.
2a

(a) Test curve for Goal A: [-10,10,3] (b) Test curve for Goal B: [5,-10,2]

Figure 2: Test curves for single goal navigation

As seen in the testing curve, there are a few models that learned to navigate successfully out of which
model 1400 was chosen for testing. The chosen model is seen to give 100% success rate with a mean
battery consumption of 128.957. The trajectory followed by the quadcopter is shown in Fig. 3.

Figure 3: Trajectory followed to goal [-10,10,3] - isometric view (left) and top view (right)

The results for the nearby goal are shown in Fig. 2b and Fig. 4. Here, the agent shows 70% success
rate in reaching the goal and a mean battery consumption of 126.516. This proves that the agent takes
into consideration the constraint no matter where the goal is, and learns control policies that ensure
judicial usage of battery. The remaining 30% of test episodes either involved the agent tipping over
during take-off due to bad initial orientation or flying slightly above or below the set threshold of the
goal.
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Figure 4: Trajectory followed to goal [5,-10,2] - isometric view (left) and top view (right)

4.2 Influence of battery constraint

The previous results prove that the agent learns to adapt its control velocities depending on the location
of the goal, while spending a judicial amount of battery. The next major result is a comparison with
another DDPG agent that does not have a battery constraint as its state or terminal condition. The
testing curve showed that a few models were able to solve the navigation problem to the [−10, 10, 3]
goal, out of which the model with the least battery consumption was tested further. This is seen to
give a 75% success rate with a mean battery consumption of 156.98. The 12 episodes where a bad
initial state caused immediate failure are not included in this battery consumption calculation as the
agent never really takes off. This is roughly 14% more battery consumption than the DDPG agent
trained with the battery constraint. Fig. 5 further demonstrates the impact of battery constraint on the
agent. Here, the actor modified to have 3 hidden layers of 64 units while the critic network remained
the same.

Figure 5: Comparison of battery consumption between the two DDPG agents

4.3 Comparison with Classical Control

In the previous subsection we showed that the battery constraint has helped improve the navigation
behavior of the quadcopter. A true test of the battery consumption performance of the agent is to
compare it with the performance of a classical control algorithm. We tuned a PID controller to
navigate in a straight line from the start state to the goal state. The controller was tuned such that it
can reach the goal within the same battery constraints as the DDPG agent.

To compare the battery consumption, we calculate the battery consumption by both the
trained DDPG agent and the PID-controllers over 100 episodes with the same start state and goal
state. Fig. 6 shows the battery consumption by the DDPG agent and two sets of tuned PID controllers.
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We can clearly see that the DDPG agent consumes significantly less battery than the PID-controller
while navigating between the same start and goal states. Another observation is that the PID
controller is very sensitive to the initial state of the quadcopter which has some stochasticity whereas
the DDPG agent is more robust to it. The PID controllers were tuned very carefully to allow them to
reach the goal to the best of their ability.

Figure 6: Comparison of battery consumption between the DDPG agent and the PID-controlled agents.
PID1: kpx = kpy = 0.36; kpz = 0.1; kdx = kdy = 0.25; kdz = 0.15 PID2: kpx = kpy = 0.36;
kpz = 0.2; kdx = kdy = 0.35; kdz = 0.15

4.4 Randomized Goal Navigation

Navigating to multiple goals is a highly non-trivial task for a Reinforcement Learning agent to learn.
We attempted to teach the agent to fly to any goal specified rather than just the goal it was trained on.
To do this, we randomly generated 1 of 4 goals for the agent to navigate to in every single episode.
The distance between each goal was spaced apart to ensure that the agent cannot simply drift to
one goal. Since the scope of the project also includes conserving the battery level, the input to our
DDPG was the quadcopter’s current position(x,y,z), its current goal location(x,y,z) and its battery
level. In doing so, we hoped that the quadcopter could make an informed decision based on its inputs.
Furthermore, we also drew inspiration from Hindsight Experience Replay (HER)[10] where a goal
position is appended to the normal state, action, reward, next state tuple. Even though HER works
best with an environment where the rewards are binary and sparse, HER also showed a performance
improvement in our environment.

During training, the agent was able to arrive at the randomized goal specified with almost half of
the battery to spare in several occasions. Unfortunately, the network was unable to converge and the
desired behavior could not be learned. We trained the agent for approximately 7000 episodes and
results were not at the level of the single goal navigation. In most cases, the episode terminates due
to instability of the quadcopter control. Fig. 7 shows the test reward plot for multi-goal navigation.
In the videos provided, it is evident that the quadcopter is capable of flying in the general direction
of the goal but unable to execute the finer controls to bring itself within range to acquire maximum
reward and terminate the episode. The agent learns the general behavior but completing the final task
of getting close to the goal is a much more complex challenge.

For this setting, the actor and critic networks were modified to have all layers with 128 hidden units
as more complex representations had to be learned.
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Figure 7: Test reward plot for multi-goal navigation

4.5 Project Links

Videos of our quadcopter’s performance under different test conditions can be found at
https://bit.ly/2rnVSgQ
Our code can be accessed at https://github.com/rohit-s-murthy/
quadcopter-navigation-drl.git. The README file should help with installation and
running instructions.

5 Conclusion

Throughout the project, several important lessons of reinforcement learning were observed. Firstly,
reward shaping is crucial to the success of the agent’s behavior. A reward function that’s purely based
on the distance and angle to the final goal will not be sufficient because the agent will learn a less
than optimal behavior. A reward based on incremental reward is more robust as it can be written as a
difference of potential functions. Furthermore, goal rewards should be well-scaled. In order for the
agent to learn to conserve battery, it must be added to the state input as well as the reward function.

Secondly, we showed that the RL approach was better suited for the application where battery
consumption is key. The PID controller is capable of getting to the desired goal but requires 36.5%
more battery than the DDPG agents.

Thirdly, we found that the agent is able to relate the distance to goal with the battery that it has
remaining. This is evident from the fact that the battery consumed when navigating to a closer goal
and a further goal is nearly the same. This means that when the agent needs to go further away, it
travels slower to ensure that it consumes less battery but travels faster when the goal is closer.

Lastly, generalizing a network to allow the agent to go to any point specified by the network is
an extremely difficult task. Our approach was to add the goal for each episode to the input of the
network as well as adding it to our experience replay buffer. We managed to get the agent to fly
towards the general direction but we were unsuccessful in teaching it to get close enough to the final
destination to terminate the episode. As seen in the video provided, the agent is capable of flying in
the right direction most of the time, but eventually, the battery gets used up it becomes unstable, thus
terminating the episode.

After this project, we have a more profound understanding of the hardships associated with teaching
an agent a desired behavior. If we were to continue this project we feel that we would try different
ways for the agent to generalize as well as allocate more time for training.
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